# Excess Sensitivity of High-Income Consumers

## LORENZ KUENG

Northwestern University and NBER

# How do HHs respond to large, regular, predictable, and salient cash flows?

- important for effectiveness of stimulus programs
- many cash transfers are highly predictable
- predictability and salience generates sharp predictions:
  - MPC<sup>pih</sup> = 0 for basic PIH under certainty
  - MPC<sup>bs</sup>  $\approx$  0 for basic buffer stock model

To answer this question I use

- repeated quasi-experiments from Alaska Permanent Fund Dividend (PFD) payments of about \$5,000 per household
- transaction-level data from a large personal finance website
- ► Consumer Expenditure Survey (CE) for external validity

# How do HHs respond to large, regular, predictable, and salient cash flows?

- important for effectiveness of stimulus programs
- many cash transfers are highly predictable
- predictability and salience generates sharp predictions:
  - MPC<sup>pih</sup> = 0 for basic PIH under certainty
  - $MPC^{bs} \approx 0$  for basic buffer stock model

To answer this question I use

- repeated quasi-experiments from Alaska Permanent Fund Dividend (PFD) payments of about \$5,000 per household
- transaction-level data from a large personal finance website
- ► Consumer Expenditure Survey (CE) for external validity

# How do HHs respond to large, regular, predictable, and salient cash flows?

- important for effectiveness of stimulus programs
- many cash transfers are highly predictable
- predictability and salience generates sharp predictions:
  - ▶ MPC<sup>*pih*</sup> = 0 for basic PIH under certainty
  - $MPC^{bs} \approx 0$  for basic buffer stock model

To answer this question I use

- repeated quasi-experiments from Alaska Permanent Fund Dividend (PFD) payments of about \$5,000 per household
- transaction-level data from a large personal finance website
- Consumer Expenditure Survey (CE) for external validity

- 1. Large average MPC~25% for nondurables & services
- 2. Heterogeneous MPCs concentrated among higher-income HHs

## Can rule out most previous explanations of excess sensitivity:

- Liquidity constraints and precautionary saving
  - most HHs have enough liquid assets to smooth dividend
- Inattention
  - dividend is very salient (media) and occurs regular every year
  - dividend is highly predictable months and years in advance
  - ▶ dividend completely predetermined one month in advance, but I find no anticipation effects (→ excess smoothness)
- Expenditures vs. consumption
  - strictly nondurables also respond
  - intertemporal substitution only for durables, not non-durables
  - dividend is annual and not constant, hence more difficult to use for liquidity management (eg cons. commitments/predeterm. exp.)

- 1. Large average MPC~25% for nondurables & services
- 2. Heterogeneous MPCs concentrated among higher-income HHs

Can rule out most previous explanations of excess sensitivity:

- Liquidity constraints and precautionary saving
  - most HHs have enough liquid assets to smooth dividend
- Inattention
  - dividend is very salient (media) and occurs regular every year
  - dividend is highly predictable months and years in advance
  - ► dividend completely predetermined one month in advance, but I find no anticipation effects (→ excess smoothness)
- Expenditures vs. consumption
  - strictly nondurables also respond
  - intertemporal substitution only for durables, not non-durables
  - dividend is annual and not constant, hence more difficult to use for liquidity management (eg cons. commitments/predeterm. exp.)

- 1. Large average MPC  ${\sim}25\%$  for nondurables & services
- 2. Heterogeneous MPCs concentrated among higher-income HHs

## What might be going on? $\rightarrow$ Sufficient Statistics approach

- Derive welfare loss in PIH model from not smoothing control response (ME)
  - Potential loss  $0.1\% 4.2\% \rightarrow$  economic power of setting
  - ▶ Actual losses similar across HHs & very small (<0.1%)
  - ▶ Why? Relative payment size & MPC are negatively correlated
- Intuition:
  - High-income HHs for whom non-smoothing doesn't matter drive average response (MPC>50%)
  - Lower-income HHs that shouldn't respond don't (MPC<10%)</p>
  - ▶ Lower-income HHs with low liquidity do more (MPC~25%)
- $\Rightarrow$  consistent with **near-rationality**: thinking fast & slow (?)

- 1. Large average MPC  ${\sim}25\%$  for nondurables & services
- 2. Heterogeneous MPCs concentrated among higher-income HHs

## What might be going on? $\rightarrow$ Sufficient Statistics approach

- - ▶ Potential loss 0.1%-4.2% → economic power of setting
  - ▶ Actual losses similar across HHs & very small (<0.1%)
  - ▶ Why? Relative payment size & MPC are negatively correlated
- Intuition:
  - High-income HHs for whom non-smoothing doesn't matter drive average response (MPC>50%)
  - ▶ Lower-income HHs that shouldn't respond don't (MPC<10%)
  - ▶ Lower-income HHs with low liquidity do more (MPC~25%)
- $\Rightarrow$  consistent with **near-rationality**: thinking fast & slow (?)

- 1. Large average MPC  ${\sim}25\%$  for nondurables & services
- 2. Heterogeneous MPCs concentrated among higher-income HHs

## What might be going on? $\rightarrow$ Sufficient Statistics approach

- - ▶ Potential loss 0.1%-4.2% → economic power of setting
  - ► Actual losses similar across HHs & very small (<0.1%)
  - ▶ Why? Relative payment size & MPC are negatively correlated

## Intuition:

- High-income HHs for whom non-smoothing doesn't matter drive average response (MPC>50%)
- Lower-income HHs that shouldn't respond don't (MPC<10%)</p>
- ▶ Lower-income HHs with low liquidity do more (MPC~25%)

## $\Rightarrow$ consistent with **near-rationality**: thinking fast & slow (?)

- 1. Large average MPC  ${\sim}25\%$  for nondurables & services
- 2. Heterogeneous MPCs concentrated among higher-income HHs

## What might be going on? $\rightarrow$ Sufficient Statistics approach

- - ▶ Potential loss 0.1%-4.2% → economic power of setting
  - ► Actual losses similar across HHs & very small (<0.1%)
  - ▶ Why? Relative payment size & MPC are negatively correlated

## Intuition:

- High-income HHs for whom non-smoothing doesn't matter drive average response (MPC>50%)
- Lower-income HHs that shouldn't respond don't (MPC<10%)</p>
- ► Lower-income HHs with low liquidity do more (MPC~25%)
- $\Rightarrow$  consistent with near-rationality: thinking fast & slow (?)

# Outline

- 1. The Alaska Permanent Fund Dividend
- 2. Data
- 3. Spending Response using Transaction Data
- 4. External Validity using Survey Data
- 5. MPC Heterogeneity
- 6. Welfare Losses from Excess Sensitivity
- 7. Conclusion

## Outline

# 1. The Alaska Permanent Fund Dividend

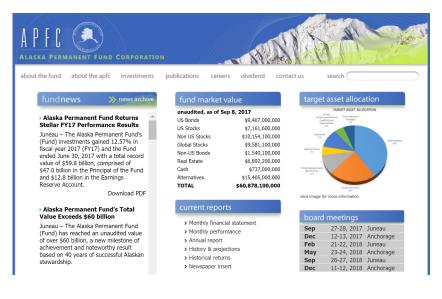
- 2. Data
- 3. Spending Response using Transaction Data
- 4. External Validity using Survey Data
- 5. MPC Heterogeneity
- 6. Welfare Losses from Excess Sensitivity
- 7. Conclusion

# **Alaska Permanent Fund Dividend (PFD)** = annual payments from state's broadly-diversified wealth fund

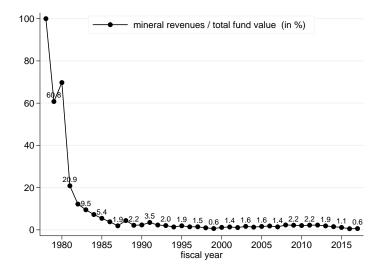
dividend size is independent of local economy

## Important characteristics of PFD for excess sensitivity tests:

- 1. nominally large and lump-sum
  - eligibility predetermined by presence during previous year
  - dividend is \$1,700 on average per person! (in real \$ of 2014)
    - avg family size = 2.8  $\Rightarrow$  \$4,800 every October
- 2. predetermined, regular, and salient
  - based on June numbers, announced in Sept., paid in October
  - highly predictable: 5-year moving-average of fund's income
  - well covered by local media during the year & fund's website


# **Alaska Permanent Fund Dividend (PFD)** = annual payments from state's broadly-diversified wealth fund

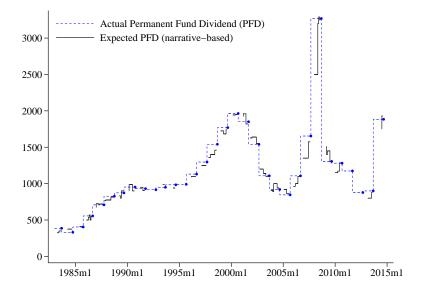
dividend size is independent of local economy


## Important characteristics of PFD for excess sensitivity tests:

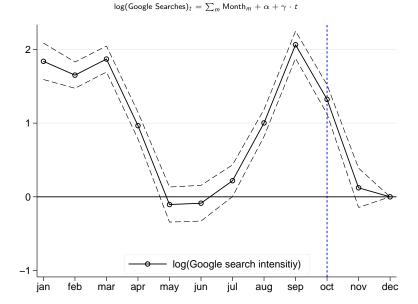
- 1. nominally large and lump-sum
  - eligibility predetermined by presence during previous year
  - dividend is \$1,700 on average per person! (in real \$ of 2014)
    - avg family size = 2.8  $\Rightarrow$  \$4,800 every October
- 2. predetermined, regular, and salient
  - based on June numbers, announced in Sept., paid in October
  - highly predictable: 5-year moving-average of fund's income
  - well covered by local media during the year & fund's website

# **Independence from Local Economy: Portfolio allocation** from Alaska Permanent Fund's website




# **Independence from Local Economy: Oil Revenue** is only small fraction of fund's market value




## Size & Predictability: Divided Forecast using dividend rule set in state law based on APF's 'income from assets'



### Salience: Dividend forecast by Local Newspapers (narratives)



#### Salience: Google Searches for term "Permanent Fund"



# Outline

1. The Alaska Permanent Fund Dividend

# 2. **Data**

- 3. Spending Response using Transaction Data
- 4. External Validity using Survey Data
- 5. MPC Heterogeneity
- 6. Welfare Losses from Excess Sensitivity
- 7. Conclusion

## Household Spending Data

- 1. New transaction data from user accounts at a large **personal finance website** from 2010-2014
  - 1,400 Alaskan users that receive dividend via direct deposit (treatment group)
  - 2,200 users from state of Washington (control group)

- 2. Consumer Expenditure Survey (CE) to check external validity of new data and results
  - ▶ fewer Alaskan households: ~ 80 per year (only in one MSA)
  - Ionger time series: 1980-2013

## Household Spending Data

- 1. New transaction data from user accounts at a large **personal finance website** from 2010-2014
  - 1,400 Alaskan users that receive dividend via direct deposit (treatment group)
  - 2,200 users from state of Washington (control group)

- 2. **Consumer Expenditure Survey** (CE) to check external validity of new data and results
  - ▶ fewer Alaskan households: ~ 80 per year (only in one MSA)
  - Ionger time series: 1980-2013

## Pros and Cons of Account-Level Data vs. Surveys

## Advantages

- Automatic, passive data collection
- No recall bias and other survey measurement error
- Easy to identify Permanent Fund Dividend income
- Long(ish) high-frequency panel of expenditures and income

## Disadvantages

- Non-representativeness
- Less demographic information
- Households with multiple users
- Unlinked accounts
- Mapping merchant codes to expenditures categories
- Dealing with uncategorized transactions, checks and cash transactions (ATM withdrawals)

## Pros and Cons of Account-Level Data vs. Surveys

## Advantages

- Automatic, passive data collection
- No recall bias and other survey measurement error
- Easy to identify Permanent Fund Dividend income
- Long(ish) high-frequency panel of expenditures and income

## Disadvantages

- Non-representativeness
- Less demographic information
- Households with multiple users
- Unlinked accounts
- Mapping merchant codes to expenditures categories
- Dealing with uncategorized transactions, checks and cash transactions (ATM withdrawals)

## **Summary Statistics**

| A. PFW Sample                                | State of Alaska |         |             | State of Washington |         |         |
|----------------------------------------------|-----------------|---------|-------------|---------------------|---------|---------|
|                                              | Mean            | Median  | St.Dev.     | Mean                | Median  | St.Dev. |
| Permanent Fund Dividend                      |                 |         |             |                     |         |         |
| - annual payments                            | 1,999           | 1,417   | 1,357       |                     |         |         |
| - per annual afer-tax income                 | 2.8%            | 2.1%    | 3.9%        |                     |         |         |
| - per annual total expenditures              | 4.7%            | 3.6%    | 3.9%        |                     |         |         |
| Quarterly Expenditures                       |                 |         |             |                     |         |         |
| - nondurables and services                   | 8,441           | 7,179   | 5,858       | 8,049               | 6,531   | 6,103   |
| - durables (paid for with a credit card)     | 3,116           | 2,235   | 3,036       | 2,971               | 2,074   | 3,019   |
| - other items in total expenditures          | 13,017          | 8,651   | 15,607      | 12,849              | 8,229   | 16,060  |
| - total expenditures                         | 24,576          | 19,177  | 20,993      | 23,910              | 18,067  | 21,719  |
| Income                                       |                 |         |             |                     |         |         |
| - annual after-tax income                    | 99,716          | 82,294  | 74,056      | 96,380              | 76,872  | 76,653  |
| - annual before-tax income (imputed) $^{1)}$ | 119,757         | 92,267  | $104,\!573$ | 116,922             | 87,702  | 108,066 |
| Net Financial Assets                         |                 |         |             |                     |         |         |
| - bank accounts ('cash-on-hand')             | 40,903          | 11,715  | 85,484      | 61,234              | 21,911  | 107,198 |
| - taxable (brokerage) accounts               | 150,708         | 8,751   | 461,182     | 229,808             | 28,021  | 599,532 |
| - tax-deferred accounts                      | 164,086         | 33,952  | 366,360     | 164,686             | 42,666  | 327,013 |
| - total net financial assets                 | 366,055         | 108,034 | 770,065     | 468,000             | 153,332 | 870,699 |
| Demographics                                 |                 |         |             |                     |         |         |
| - family size                                | 2.80            | 2       | 1.37        | 2.61                | 2       | 1.37    |
| - age                                        | 32.18           | 31      | 10.67       | 30.93               | 31      | 10.27   |
| - education (years of schooling)             | 15.34           | 16      | 2.22        | 16.03               | 16      | 2.12    |
| Number of households                         | 1,379           |         |             | 2,167               |         |         |

Table 1: Summary Statistics

## **Summary Statistics**

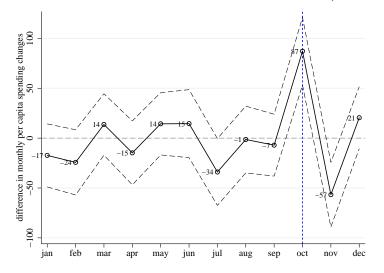
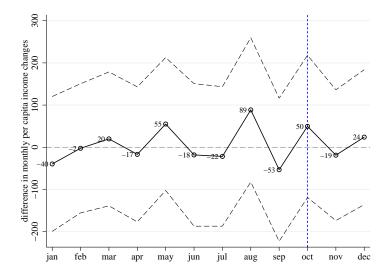
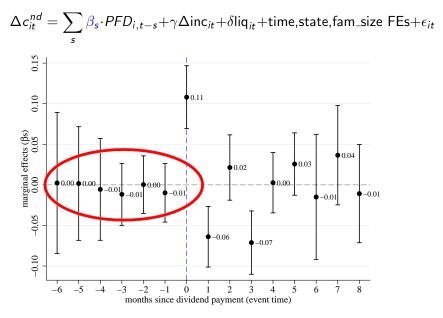

| A. PFW Sample                                | State of Alaska |         |             | State of Washington |         |         |
|----------------------------------------------|-----------------|---------|-------------|---------------------|---------|---------|
|                                              | Mean            | Median  | St.Dev.     | Mean                | Median  | St.Dev. |
| Permanent Fund Dividend                      |                 |         |             |                     |         |         |
| - annual payments                            | 1,999           | 1,417   | 1,357       |                     |         |         |
| - per annual afer-tax income                 | 2.8%            | 2.1%    | 3.9%        |                     |         |         |
| - per annual total expenditures              | 4.7%            | 3.6%    | 3.9%        |                     |         |         |
| Quarterly Expenditures                       |                 |         |             |                     |         |         |
| - nondurables and services                   | 8,441           | 7,179   | 5,858       | 8,049               | 6,531   | 6,103   |
| - durables (paid for with a credit card)     | 3,116           | 2,235   | 3,036       | 2,971               | 2,074   | 3,019   |
| - other items in total expenditures          | 13,017          | 8,651   | 15,607      | 12,849              | 8,229   | 16,060  |
| - total expenditures                         | 24,576          | 19,177  | 20,993      | 23,910              | 18,067  | 21,719  |
| Income                                       |                 |         |             |                     |         |         |
| - annual after-tax income                    | 99,716          | 82,294  | 74,056      | 96,380              | 76,872  | 76,653  |
| - annual before-tax income (imputed) $^{1)}$ | 119,757         | 92,267  | $104,\!573$ | 116,922             | 87,702  | 108,066 |
| Net Financial Assets                         |                 |         |             |                     |         |         |
| - bank accounts ('cash-on-hand')             | 40,903          | 11,715  | 85,484      | 61,234              | 21,911  | 107,198 |
| - taxable (brokerage) accounts               | 150,708         | 8,751   | 461,182     | 229,808             | 28,021  | 599,532 |
| - tax-deferred accounts                      | 164,086         | 33,952  | 366,360     | 164,686             | 42,666  | 327,013 |
| - total net financial assets                 | 366,055         | 108,034 | 770,065     | 468,000             | 153,332 | 870,699 |
| Demographics                                 |                 |         |             |                     |         |         |
| - family size                                | 2.80            | 2       | 1.37        | 2.61                | 2       | 1.37    |
| - age                                        | 32.18           | 31      | 10.67       | 30.93               | 31      | 10.27   |
| - education (years of schooling)             | 15.34           | 16      | 2.22        | 16.03               | 16      | 2.12    |
| Number of households                         | 1,379           |         |             | 2,167               |         |         |

Table 1: Summary Statistics

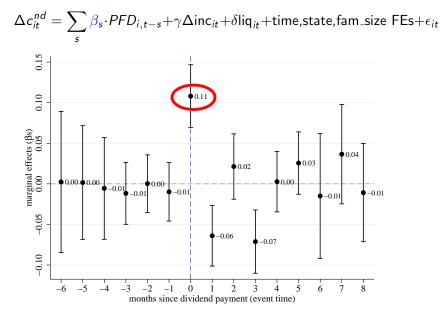
# Outline


- 1. The Alaska Permanent Fund Dividend
- 2. Data
- 3. Spending Response using Transaction Data
- 4. External Validity using Survey Data
- 5. MPC Heterogeneity
- 6. Welfare Losses from Excess Sensitivity
- 7. Conclusion

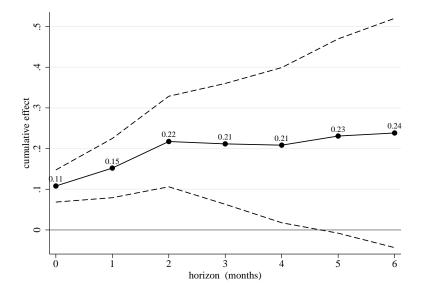
# Nonparametric Evidence of Excess Sensitivity: Average nondurables changes per cap, Alaska vs. Washington (Diff-in-Diff)




Implies MPC of 12% after one month, 24% after one quarter


# **Nonparametric Evidence of Excess Sensitivity:** Not driven by corresponding changes in other income (excluding dividend)




## Excess Sensitivity: No anticipation effects



#### Excess Sensitivity: Large response in month of dividend



## Excess Sensitivity: Cumulative MPC ~25%, stable after 1 quarter



## Excess Sensitivity: Robustness of quarterly MPC

$$\Delta c_{it}^{nd} = \beta \cdot PFD_{it} + \text{time,state,fam_size FEs} + \lambda' x_{it} + \epsilon_{it}$$

| Specification:                            | A. MPC of Nondurables    |                                     |                          |                          |                          |  |  |
|-------------------------------------------|--------------------------|-------------------------------------|--------------------------|--------------------------|--------------------------|--|--|
|                                           | main effects             | liquid assets and<br>current income | permanent<br>income      | FE estimator             | state x time FF          |  |  |
| Dependent variable: quarterly nondurables | $\Delta c_{it}$          | $\Delta c_{it}$                     | $\Delta c_{it}$          | c <sub>it</sub>          | $\Delta c_{it}$          |  |  |
|                                           | (1)                      | (2)                                 | (3)                      | (4)                      | (5)                      |  |  |
| Permanent Fund Dividend payments          | $0.280^{***}$<br>(0.044) | 0.258***<br>(0.043)                 | $0.264^{***}$<br>(0.044) | $0.240^{***}$<br>(0.035) | $0.276^{***}$<br>(0.070) |  |  |
| Family size FE                            | Yes                      | Yes                                 | Yes                      | Yes                      | Yes                      |  |  |
| Time FE (year-by-quarter)                 | Yes                      | Yes                                 | Yes                      | Yes                      |                          |  |  |
| State FE                                  | Yes                      | Yes                                 | Yes                      |                          |                          |  |  |
| Liquid assets                             |                          | Yes                                 | Yes                      | Yes                      | Yes                      |  |  |
| Current income (level and change)         |                          | Yes                                 | Yes                      | Yes                      | Yes                      |  |  |
| Permanent income                          |                          |                                     | Yes                      |                          |                          |  |  |
| Household characteristics                 |                          |                                     | Yes                      | Yes                      | Yes                      |  |  |
| Household FE                              |                          |                                     |                          | Yes                      | Yes                      |  |  |
| State x time FE                           |                          |                                     |                          |                          | Yes                      |  |  |
| Observations                              | 44,577                   | 44,577                              | 44,577                   | 47,787                   | 44,577                   |  |  |
| R-squared                                 | 0.106                    | 0.127                               | 0.129                    | 0.680                    | 0.140                    |  |  |

Table 2: Excess Sensitivity

## Excess Sensitivity: Robustness of quarterly MPC

$$\Delta c_{it}^{nd} = \beta \cdot PFD_{it} + \text{time,state,fam_size FEs} + \lambda' x_{it} + \epsilon_{it}$$

|                                           | A. MPC of Nondurables |                                     |                     |                 |                 |  |  |
|-------------------------------------------|-----------------------|-------------------------------------|---------------------|-----------------|-----------------|--|--|
| Specification:                            | main effects          | liquid assets and<br>current income | permanent<br>income | FE estimator    | state x time FE |  |  |
| Dependent variable: quarterly nondurables | $\Delta c_{it}$       | $\Delta c_{it}$                     | $\Delta c_{it}$     | c <sub>it</sub> | $\Delta c_{it}$ |  |  |
|                                           | (1)                   | (2)                                 | (3)                 | (4)             | (5)             |  |  |
| Permanent Fund Dividend payments          | 0.280***              | 0.258***                            | 0.264***            | 0.240***        | 0.276***        |  |  |
|                                           | (0.044)               | (0.043)                             | (0.044)             | (0.035)         | (0.070)         |  |  |
| Family size FE                            | Yes                   | Yes                                 | Yes                 | Yes             | Yes             |  |  |
| Time FE (year-by-quarter)                 | Yes                   | Yes                                 | Yes                 | Yes             |                 |  |  |
| State FE                                  | Yes                   | Yes                                 | Yes                 |                 |                 |  |  |
| Liquid assets                             |                       | Yes                                 | Yes                 | Yes             | Yes             |  |  |
| Current income (level and change)         |                       | Yes                                 | Yes                 | Yes             | Yes             |  |  |
| Permanent income                          |                       |                                     | Yes                 |                 |                 |  |  |
| Household characteristics                 |                       |                                     | Yes                 | Yes             | Yes             |  |  |
| Household FE                              |                       |                                     |                     | Yes             | Yes             |  |  |
| State x time FE                           |                       |                                     |                     |                 | Yes             |  |  |
| Observations                              | 44,577                | 44,577                              | 44,577              | 47,787          | 44,577          |  |  |
| R-squared                                 | 0.106                 | 0.127                               | 0.129               | 0.680           | 0.140           |  |  |

Table 2: Excess Sensitivity

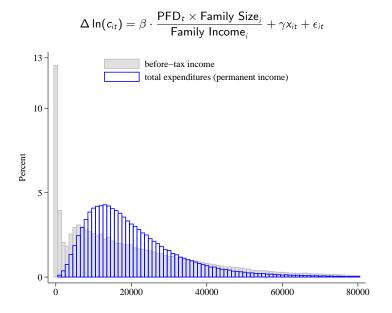
## Outline

- 1. The Alaska Permanent Fund Dividend
- 2. Data
- 3. Spending Response using Transaction Data
- 4. External Validity using Survey Data
- 5. MPC Heterogeneity
- 6. Welfare Losses from Excess Sensitivity
- 7. Conclusion

### External validity implementing same analysis using the CE

### I obtain similar results after taking into account

- 1. dividend has to be imputed in the CE
- 2. different sample composition


|                                                                | A. Comparing CE and PFW |                                  |                                 |                                         |                                        |  |  |
|----------------------------------------------------------------|-------------------------|----------------------------------|---------------------------------|-----------------------------------------|----------------------------------------|--|--|
|                                                                |                         | PFW Sample                       |                                 |                                         |                                        |  |  |
| Dependent variable: $\Delta c_{it}$ ,<br>quarterly nondurables | CE Sample (1)           | using the<br>observed PFD<br>(2) | using the<br>imputed PFD<br>(3) | dealing w/ sample<br>composition<br>(4) | IV imputed with<br>observed PFD<br>(5) |  |  |
| PFD payments                                                   |                         | 0.262***<br>(0.044)              |                                 |                                         |                                        |  |  |
| PFD x family size x Alaska                                     | 0.079**<br>(0.036)      |                                  | 0.201***<br>(0.033)             | -0.013<br>(0.057)                       | 0.227***<br>(0.038)                    |  |  |
| PFD x family size x Alaska x income/\$100,000                  |                         |                                  |                                 | $0.185^{***}$<br>(0.053)                |                                        |  |  |
| Control variables                                              |                         | sa                               | me as Table 2, Colu             | umn 2                                   |                                        |  |  |
| Observations<br>R-squared                                      | 385,800<br>0.006        | 44,577<br>0.129                  | 44,577<br>0.129                 | 44,577<br>0.130                         | 44,577<br>0.129                        |  |  |
| Predicted MPC at average CE income                             |                         |                                  |                                 | 0.104***<br>(0.039)                     |                                        |  |  |

#### Table 3: External Validity using the Consumer Expenditure Survey (CE)

### Comparison with Hsieh (AER 2003): Non-Classical Meas. Error

$$\Delta \ln(c_{it}) = \beta \cdot \frac{\mathsf{PFD}_t \times \mathsf{Family Size}_i}{\mathsf{Family Income}_i} + \gamma x_{it} + \epsilon_{it}$$

### Comparison with Hsieh (AER 2003): Non-Classical Meas. Error



### Comparison with Hsieh (AER 2003): Non-Classical Meas. Error

$$\Delta \ln(c_{it}) = \beta \cdot \frac{\mathsf{PFD}_t \times \mathsf{Family Size}_i}{\mathsf{Family Income}_i} + \gamma x_{it} + \epsilon_{it}$$

|                                                                     | B. Comparison with Hsieh (2003) using CE |                   |                               |                                       |                                    |  |
|---------------------------------------------------------------------|------------------------------------------|-------------------|-------------------------------|---------------------------------------|------------------------------------|--|
| Dependent variable: $\Delta \ln(c_{it})$ ,<br>quarterly nondurables | Hsieh (2003)                             | replication       | normalize w/<br>total expend. | attenuation factor<br>and full sample | IV curr. income<br>w/ perm. income |  |
|                                                                     | (6)                                      | (7)               | (8)                           | (9)                                   | (10)                               |  |
| PFD x family size x Alaska / before-tax income                      | -0.003<br>(0.033)                        | -0.003<br>(0.005) |                               |                                       |                                    |  |
| PFD x family size x Alaska / total expenditures                     |                                          |                   | 0.123<br>(0.086)              | 0.136***<br>(0.032)                   | 0.076***<br>(0.023)                |  |
| Household characteristics                                           | Yes                                      | Yes               | Yes                           | Yes                                   | Yes                                |  |
| Family size                                                         | Yes                                      | Yes               | Yes                           | Yes                                   | Yes                                |  |
| Time FE                                                             |                                          |                   |                               | Yes                                   | Yes                                |  |
| State FE                                                            |                                          |                   |                               | Yes                                   | Yes                                |  |
| Inverse total expenditures                                          |                                          |                   |                               | Yes                                   | Yes                                |  |
| Number of observations (rounded)                                    | 806                                      | 800               | 800                           | 559,400                               | 458,000                            |  |
| Number of Alaskan CUs (rounded)                                     | 806                                      | 800               | 800                           | 2,800                                 | 2,300                              |  |
| R-squared                                                           |                                          | 0.009             | 0.013                         |                                       |                                    |  |

#### Table 3: External Validity using the Consumer Expenditure Survey (CE)

### Comparison with Hsieh (AER 2003): Non-Classical Meas. Error

$$\Delta \ln(c_{it}) = \beta \cdot rac{\mathsf{PFD}_t imes \mathsf{Family Size}_i}{\mathsf{Family Income}_i} + \gamma x_{it} + \epsilon_{it}$$

|                                                                  | B. Comparison with Hsieh (2003) using CE |                    |                                      |                                              |                                            |  |
|------------------------------------------------------------------|------------------------------------------|--------------------|--------------------------------------|----------------------------------------------|--------------------------------------------|--|
| Dependent variable: $\Delta \ln(c_n)$ ,<br>quarterly nondurables | Hsieh (2003)<br>(6)                      | replication<br>(7) | normalize w/<br>total expend.<br>(8) | attenuation factor<br>and full sample<br>(9) | IV curr. income<br>w/ perm. income<br>(10) |  |
| PFD x family size x Alaska / before-tax income                   | -0.003<br>(0.033)                        | -0.003<br>(0.005)  |                                      |                                              |                                            |  |
| PFD x family size x Alaska / total expenditures                  |                                          | ()                 | 0.123<br>(0.086)                     | $0.136^{***}$<br>(0.032)                     | $0.076^{***}$<br>(0.023)                   |  |
| Household characteristics                                        | Yes                                      | Yes                | Yes                                  | Yes                                          | Yes                                        |  |
| Family size                                                      | Yes                                      | Yes                | Yes                                  | Yes                                          | Yes                                        |  |
| Time FE                                                          |                                          |                    |                                      | Yes                                          | Yes                                        |  |
| State FE                                                         |                                          |                    |                                      | Yes                                          | Yes                                        |  |
| Inverse total expenditures                                       |                                          |                    |                                      | Yes                                          | Yes                                        |  |
| Number of observations (rounded)                                 | 806                                      | 800                | 800                                  | 559,400                                      | 458,000                                    |  |
| Number of Alaskan CUs (rounded)                                  | 806                                      | 800                | 800                                  | 2,800                                        | 2,300                                      |  |
| R-squared                                                        |                                          | 0.009              | 0.013                                |                                              |                                            |  |

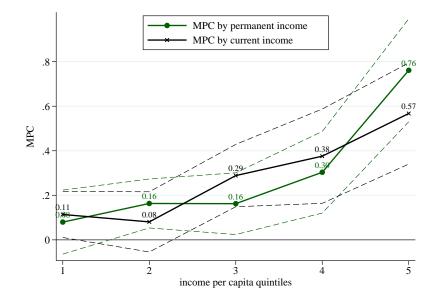
#### Table 3: External Validity using the Consumer Expenditure Survey (CE)

## Outline

- 1. The Alaska Permanent Fund Dividend
- 2. Data
- 3. Spending Response using Transaction Data
- 4. External Validity using Survey Data
- 5. MPC Heterogeneity
- 6. Welfare Losses from Excess Sensitivity
- 7. Conclusion

| Dep. var.: nondurables $\Delta c_{it}$               | A. Liquidity  |               | B. Iı        | ncome     |
|------------------------------------------------------|---------------|---------------|--------------|-----------|
| Interaction measure:                                 | liquid        | cash-on-      | current      | permanent |
|                                                      | assets        | hand ratio    | income       | income    |
|                                                      | (1)           | (2)           | (3)          | (4)       |
| PFD payments x $1^{st}$ quintile                     | $0.270^{***}$ | $0.357^{***}$ | $0.117^{**}$ | 0.080     |
|                                                      | (0.065)       | (0.059)       | (0.051)      | (0.072)   |
| PFD payments x $2^{\rm nd}$ quintile                 | 0.283***      | 0.253***      | 0.079        | 0.163***  |
|                                                      | (0.057)       | (0.065)       | (0.068)      | (0.055)   |
| PFD payments x $3^{\rm rd}$ quintile                 | 0.237***      | 0.292***      | 0.291***     | 0.163**   |
|                                                      | (0.085)       | (0.101)       | (0.070)      | (0.069)   |
| PFD payments x $4^{\mathrm{th}}$ quintile            | 0.181*        | 0.190*        | 0.371***     | 0.304***  |
|                                                      | (0.106)       | (0.098)       | (0.105)      | (0.092)   |
| PFD payments x $\boldsymbol{5}^{\text{th}}$ quintile | 0.341***      | 0.207**       | 0.572***     | 0.761***  |
|                                                      | (0.093)       | (0.095)       | (0.113)      | (0.116)   |
| Family size FE                                       | Yes           | Yes           | Yes          | Yes       |
| Time FE                                              | Yes           | Yes           | Yes          |           |
| State FE                                             | Yes           | Yes           | Yes          | Yes       |
| Quintile FE (main effects)                           | Yes           | Yes           | Yes          | Yes       |
| Income change                                        | Yes           | Yes           | Yes          | Yes       |
| Household characteristics                            | Yes           | Yes           | Yes          | Yes       |
| Observations                                         | 44,577        | 44,577        | 44,577       | 44,577    |
| R-squared                                            | 0.128         | 0.128         | 0.129        | 0.130     |
| p value of test $\beta_1=\beta_5$                    | 0.5132        | 0.1557        | 0.0001       | 0.0000    |

### Table 4: MPC Heterogeneity


| Dep. var.: nondurables $\Delta c_{it}$    | A. Liq                                                | uidity                        | B. Ir                                                | ncome                      |
|-------------------------------------------|-------------------------------------------------------|-------------------------------|------------------------------------------------------|----------------------------|
| Interaction measure:                      | liquid<br>assets<br>(1)                               | cash-on-<br>hand ratio<br>(2) | current<br>income<br>(3)                             | permanent<br>income<br>(4) |
| PFD payments x $1^{st}$ quintile          | $0.270^{***}$<br>(0.065)                              | 0.357***<br>(0.059)           | $\begin{array}{c} 0.117^{**} \\ (0.051) \end{array}$ | 0.080<br>(0.072)           |
| PFD payments x $2^{\rm nd}$ quintile      | $0.283^{***}$<br>(0.057)                              | 0.253***<br>(0.065)           | 0.079<br>(0.068)                                     | $0.163^{***}$<br>(0.055)   |
| PFD payments x $3^{\rm rd}$ quintile      | 0.237***<br>(0.085)                                   | 0.292***<br>(0.101)           | 0.291***<br>(0.070)                                  | 0.163**<br>(0.069)         |
| PFD payments x $4^{\mathrm{th}}$ quintile | 0.181*<br>(0.106)                                     | 0.190*<br>(0.098)             | 0.371***<br>(0.105)                                  | 0.304***<br>(0.092)        |
| PFD payments x $5^{\rm th}$ quintile      | $\begin{array}{c} 0.341^{***} \\ (0.093) \end{array}$ | 0.207**<br>(0.095)            | 0.572***<br>(0.113)                                  | 0.761***<br>(0.116)        |
| Family size FE                            | Yes                                                   | Yes                           | Yes                                                  | Yes                        |
| Time FE                                   | Yes                                                   | Yes                           | Yes                                                  | Yes                        |
| State FE                                  | Yes                                                   | Yes                           | Yes                                                  | Yes                        |
| Quintile FE (main effects)                | Yes                                                   | Yes                           | Yes                                                  | Yes                        |
| Income change                             | Yes                                                   | Yes                           | Yes                                                  | Yes                        |
| Household characteristics                 | Yes                                                   | Yes                           | Yes                                                  | Yes                        |
| Observations<br>R-squared                 | 44,577<br>0.128                                       | 44,577<br>0.128               | 44,577<br>0.129                                      | 44,577<br>0.130            |
| p value of test $\beta_1 = \beta_5$       | 0.5132                                                | 0.1557                        | 0.0001                                               | 0.0000                     |

### Table 4: MPC Heterogeneity

| Dep. var.: nondurables $\Delta c_{it}$    | A. Lie                   | quidity                       | B. Ii                                                | ncome                      |
|-------------------------------------------|--------------------------|-------------------------------|------------------------------------------------------|----------------------------|
| Interaction measure:                      | liquid<br>assets<br>(1)  | cash-on-<br>hand ratio<br>(2) | current<br>income<br>(3)                             | permanent<br>income<br>(4) |
|                                           | (1)                      | (2)                           | (3)                                                  | (4)                        |
| PFD payments x $1^{\rm st}$ quintile      | $0.270^{***}$<br>(0.065) | $0.357^{***}$<br>(0.059)      | $\begin{array}{c} 0.117^{**} \\ (0.051) \end{array}$ | 0.080<br>(0.072)           |
| PFD payments x 2 <sup>nd</sup> quintile   | 0.283***                 | 0.253***                      | 0.079                                                | 0.163***                   |
| 1 5 1                                     | (0.057)                  | (0.065)                       | (0.068)                                              | (0.055)                    |
| PFD payments x $3^{\rm rd}$ quintile      | 0.237***<br>(0.085)      | 0.292***<br>(0.101)           | 0.291***<br>(0.070)                                  | 0.163**<br>(0.069)         |
| PFD payments x $4^{\mathrm{th}}$ quintile | 0.181*<br>(0.106)        | 0.190*<br>(0.098)             | 0.371***<br>(0.105)                                  | 0.304***<br>(0.092)        |
| PFD payments x $5^{\rm th}$ quintile      | 0.341***<br>(0.093)      | 0.207**<br>(0.095)            | $0.572^{***}$<br>(0.113)                             | 0.761***<br>(0.116)        |
| Family size FE                            | Yes                      | Yes                           | Yes                                                  | Yes                        |
| Time FE                                   | Yes                      | Yes                           | Yes                                                  | Yes                        |
| State FE                                  | Yes                      | Yes                           | Yes                                                  | Yes                        |
| Quintile FE (main effects)                | Yes                      | Yes                           | Yes                                                  | Yes                        |
| Income change                             | Yes                      | Yes                           | Yes                                                  | Yes                        |
| Household characteristics                 | Yes                      | Yes                           | Yes                                                  | Yes                        |
| Observations                              | 44,577                   | 44,577                        | 44,577                                               | 44,577                     |
| R-squared                                 | 0.128                    | 0.128                         | 0.129                                                | 0.130                      |
| p value of test $\beta_1=\beta_5$         | 0.5132                   | 0.1557                        | 0.0001                                               | 0.0000                     |

#### Table 4: MPC Heterogeneity

### What drives MPC heterogeneity? Mostly income per capita



## Outline

- 1. The Alaska Permanent Fund Dividend
- 2. Data
- 3. Spending Response using Transaction Data
- 4. External Validity using Survey Data
- 5. MPC Heterogeneity
- 6. Welfare Losses from Excess Sensitivity
- 7. Conclusion

### What can explain this large excess sensitivity?

- Liquidity-to-income ratio does predict lower MPC, but most is left unexplained
- Liquidity is only source of MPC heterogeneity in standard model, not income
- Calculate welfare loss from not smoothing dividend in PIH
  - Potential loss from fully spending PFD in the 4<sup>th</sup> quarter (c<sub>i</sub><sup>htm</sup>) instead of fully smoothing (c<sub>i</sub><sup>pih</sup>)

$$PotentialLoss(c_i^{htm}, c_i^{pih}) \approx \left(\frac{PFD_i}{c_i^{pih}}\right)^2 \cdot \frac{\gamma}{2} \cdot \frac{T-1}{T^2}$$

Actual loss also depends on behavioral response (MPC)

$$Loss(c_i, c_i^{pih}) \equiv \frac{\Delta w}{w} \approx (MPC_i)^2 \cdot PotentialLoss(c_i^{htm}, c_i^{pih})$$

### What can explain this large excess sensitivity?

- Liquidity-to-income ratio does predict lower MPC, but most is left unexplained
- Liquidity is only source of MPC heterogeneity in standard model, not income
- Calculate welfare loss from not smoothing dividend in PIH
  - Potential loss from fully spending PFD in the 4<sup>th</sup> quarter (c<sub>i</sub><sup>htm</sup>) instead of fully smoothing (c<sub>i</sub><sup>pih</sup>)

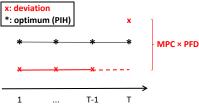
$$extsf{PotentialLoss}(c_i^{htm}, c_i^{pih}) pprox \left(rac{ extsf{PFD}_i}{c_i^{pih}}
ight)^2 \cdot rac{\gamma}{2} \cdot rac{ extsf{T}-1}{ extsf{T}^2}$$

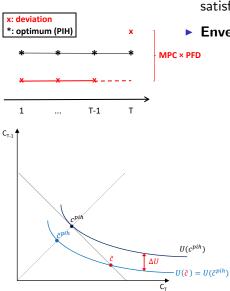
Actual loss also depends on behavioral response (MPC)

$$Loss(c_i, c_i^{pih}) \equiv \frac{\Delta w}{w} \approx (MPC_i)^2 \cdot PotentialLoss(c_i^{htm}, c_i^{pih})$$

### What can explain this large excess sensitivity?

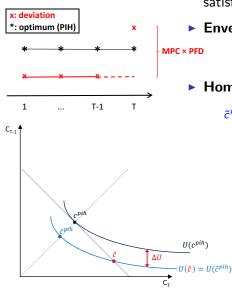
- Liquidity-to-income ratio does predict lower MPC, but most is left unexplained
- Liquidity is only source of MPC heterogeneity in standard model, not income
- ► Calculate welfare loss from not smoothing dividend in PIH
  - Potential loss from fully spending PFD in the 4<sup>th</sup> quarter (c<sub>i</sub><sup>htm</sup>) instead of fully smoothing (c<sub>i</sub><sup>pih</sup>)


$$PotentialLoss(c_i^{htm}, c_i^{pih}) pprox \left(rac{PFD_i}{c_i^{pih}}
ight)^2 \cdot rac{\gamma}{2} \cdot rac{T-1}{T^2}$$


Actual loss also depends on behavioral response (MPC)

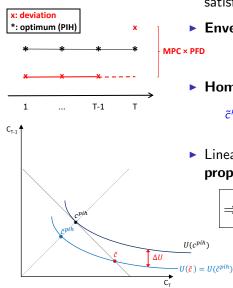
$$Loss(c_i, c_i^{pih}) \equiv \frac{\Delta w}{w} \approx (MPC_i)^2 \cdot PotentialLoss(c_i^{htm}, c_i^{pih})$$

### Intuition


## Both consumption plans (c<sup>pih</sup>, č) must satisfy the intertemp. budget constraint






- Both consumption plans (c<sup>pih</sup>, č) must satisfy the intertemp. budget constraint
- Envelope theorem:

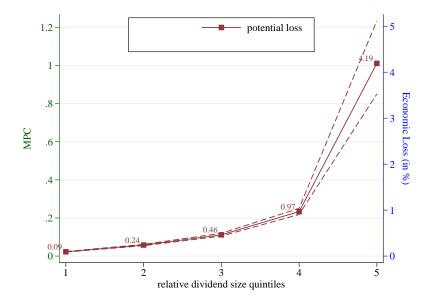
$$\Delta U pprox rac{1}{2} rac{\partial^2 U}{\partial c^2} imes ( ilde{c} - c^{
hoih})^2$$



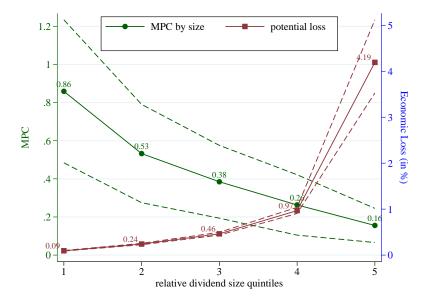
- Both consumption plans (c<sup>pih</sup>, č) must satisfy the intertemp. budget constraint
- Envelope theorem:
  - $\Delta U pprox rac{1}{2} rac{\partial^2 U}{\partial c^2} imes ( ilde{c} c^{
    hoih})^2$
- Homothetic preferences:

$$ilde{c}^{pih} = rac{ ilde{w}}{w} c^{pih} o U(c^{pih}) \propto U( ilde{c}^{pih}) = U( ilde{c})$$




- Both consumption plans (c<sup>pih</sup>, č) must satisfy the intertemp. budget constraint
- Envelope theorem:
- **PFD**  $\Delta U \approx \frac{1}{2} \frac{\partial^2 U}{\partial c^2} \times (\tilde{c} c^{pih})^2$  **Homothetic preferences**:

$$ilde{c}^{
ho ih} = rac{ ilde{w}}{w} c^{
ho ih} o U(c^{
ho ih}) \propto U( ilde{c}^{
ho ih}) = U( ilde{c})$$


 Linearize U around c<sup>pih</sup> and use proportionality of č<sup>pih</sup> and c<sup>pih</sup>

$$\Rightarrow Loss( ilde{c}, c^{pih}) \equiv rac{ ilde{w} - w}{w} pprox ...$$

**Potential-loss** statistic by relative payment size quintiles  $(\gamma=2, T=4)$ 







### Is this near-rational behavior? $\Rightarrow$ calculate actual losses



### Payment scaling matters empirically: relative vs. nominal size

#### Table 4: MPC Heterogeneity

| Dep. var.: nondurables $\Delta c_{it}$  | C. Dividend Size |                |               |           |  |
|-----------------------------------------|------------------|----------------|---------------|-----------|--|
| Interaction measure:                    | PFD paymer       | nts divided by | PFD payments: |           |  |
| interaction measure.                    | perm. income     | current income | level         | quadratic |  |
|                                         | (5)              | (6)            | (7)           | (8)       |  |
|                                         |                  |                |               |           |  |
| PFD payments x 1 <sup>st</sup> quintile | 0.859***         | 0.602***       | $0.524^{***}$ |           |  |
|                                         | (0.191)          | (0.181)        | (0.163)       |           |  |
| PFD payments x 2 <sup>nd</sup> quintile | 0.533***         | 0.386***       | $0.195^{*}$   |           |  |
|                                         | (0.132)          | (0.110)        | (0.106)       |           |  |
| PFD payments x 3 <sup>rd</sup> quintile | 0.385***         | 0.344***       | 0.235**       |           |  |
|                                         | (0.097)          | (0.094)        | (0.113)       |           |  |
| PFD payments x 4 <sup>th</sup> quintile | 0.263***         | 0.281***       | 0.275***      |           |  |
|                                         | (0.081)          | (0.071)        | (0.070)       |           |  |
| PFD payments x 5 <sup>th</sup> quintile | 0.156***         | 0.170***       | 0.264***      |           |  |
|                                         | (0.046)          | (0.048)        | (0.055)       |           |  |
| PFD payments                            |                  |                |               | 0.257***  |  |
|                                         |                  |                |               | (0.098)   |  |
| (PFD payments/100) <sup>2</sup>         |                  |                |               | 0.017     |  |
|                                         |                  |                |               | (0.197)   |  |
| Family size FE                          | Yes              | Yes            | Yes           | Yes       |  |
| Time FE                                 | Yes              | Yes            | Yes           | Yes       |  |
| State FE                                | Yes              | Yes            | Yes           | Yes       |  |
| Quintile FE (main effects)              | Yes              | Yes            | Yes           |           |  |
| Income change                           | Yes              | Yes            | Yes           | Yes       |  |
| Household characteristics               | Yes              | Yes            | Yes           | Yes       |  |
| Observations                            | 44,577           | 44,577         | 44,577        | 44,577    |  |
| R-squared                               | 0.129            | 0.129          | 0.129         | 0.128     |  |
| p value of test $\beta_1=\beta_5$       | 0.0188           | 0.0002         | 0.1166        |           |  |

\_

### Payment scaling matters empirically: relative vs. nominal size

#### Table 4: MPC Heterogeneity

| Dep. var.: nondurables $\Delta c_{it}$  | C. Dividend Size |                |          |           |  |
|-----------------------------------------|------------------|----------------|----------|-----------|--|
| Interaction measure:                    | PFD payment      | nts divided by | PFD pa   | yments:   |  |
| interaction measure.                    | perm. income     | current income | level    | quadratic |  |
|                                         | (5)              | (6)            | (7)      | (8)       |  |
| PFD payments x 1 <sup>st</sup> quintile | 0.859***         | 0.602***       | 0.524*** |           |  |
| 1.1.2 1.2 1.2 1.2 1.2 1.2               | (0.191)          | (0.181)        | (0.163)  |           |  |
| PFD payments x 2 <sup>nd</sup> quintile | 0.533***         | 0.386***       | 0.195*   |           |  |
|                                         | (0.132)          | (0.110)        | (0.106)  |           |  |
| PFD payments x 3 <sup>rd</sup> quintile | 0.385***         | 0.344***       | 0.235**  |           |  |
|                                         | (0.097)          | (0.094)        | (0.113)  |           |  |
| PFD payments x 4 <sup>th</sup> quintile | 0.263***         | 0.281***       | 0.275*** |           |  |
|                                         | (0.081)          | (0.071)        | (0.070)  |           |  |
| PFD payments x 5 <sup>th</sup> quintile | 0.156***         | 0.170***       | 0.264*** |           |  |
|                                         | (0.046)          | (0.048)        | (0.055)  |           |  |
| PFD payments                            |                  |                |          | 0.257***  |  |
|                                         |                  |                |          | (0.098)   |  |
| $(PFD payments/100)^2$                  |                  |                |          | 0.017     |  |
|                                         |                  |                |          | (0.197)   |  |
| Family size FE                          | Yes              | Yes            | Yes      | Yes       |  |
| Time FE                                 | Yes              | Yes            | Yes      | Yes       |  |
| State FE                                | Yes              | Yes            | Yes      | Yes       |  |
| Quintile FE (main effects)              | Yes              | Yes            | Yes      |           |  |
| Income change                           | Yes              | Yes            | Yes      | Yes       |  |
| Household characteristics               | Yes              | Yes            | Yes      | Yes       |  |
| Observations                            | 44,577           | 44,577         | 44,577   | 44,577    |  |
| R-squared                               | 0.129            | 0.129          | 0.129    | 0.128     |  |
| p value of test $\beta_1=\beta_5$       | 0.0188           | 0.0002         | 0.1166   |           |  |

\_

| Dep. var.: $\Delta c_{it}$ ,<br>nondurables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PFD pa $1^{ m st}$                  | yments x cas<br>2 <sup>nd</sup>     | sh-on-hand o $3^{ m rd}$            | $4^{\text{th}}$                     | F test<br>p value                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| $_{ m is}$ tiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.177^{***}$<br>(0.276)            | $0.751^{**}$<br>(0.295)             | $0.464^{*}$<br>(0.282)              | $0.943^{***}$<br>(0.301)            | $\beta_{11} = \beta_{14}$<br>0.5503 |
| en 2nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.469^{***}$<br>(0.124)            | $0.410^{*}$<br>(0.227)              | $0.396^{*}$<br>(0.208)              | $0.635^{***}$<br>(0.185)            | $\beta_{21} = \beta_{24}$<br>0.4406 |
| . x relat<br><sup>p.</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.451^{***}$<br>(0.092)            | $0.291^{**}$<br>(0.137)             | 0.194<br>(0.177)                    | 0.168<br>(0.148)                    | $\beta_{31} = \beta_{34}$<br>0.0920 |
| PFD pay. x relative size quartiles<br>the size q | $0.247^{***}$<br>(0.061)            | $0.242^{***}$<br>(0.062)            | 0.089<br>(0.093)                    | -0.014<br>(0.125)                   | $\beta_{41} = \beta_{44}$<br>0.0525 |
| Control variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | same as                             | Table 2 Col                         | . 2 plus qua                        | rtile FE                            |                                     |
| Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | 44,                                 | 577                                 |                                     | $\beta_{11} = \beta_{44}$           |
| R-squared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.130                               |                                     |                                     |                                     | 0.0001                              |
| F test<br>p value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\beta_{11} = \beta_{41}$<br>0.0008 | $\beta_{12} = \beta_{42}$<br>0.0854 | $\beta_{13} = \beta_{34}$<br>0.1969 | $\beta_{14} = \beta_{44}$<br>0.0028 |                                     |

Table 5: Relative Payment Size vs. Cash-on-Hand

| Dep. var.: $\Delta c_{it},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | yments x cas                        |                                     | •                                   | F test<br>p value                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| nondurables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1^{\rm st}$                        | $2^{\rm nd}$                        | $3^{ m rd}$                         | $4^{\mathrm{th}}$                   | p vanue                             |
| $1_{\rm st}$ uartiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.177^{***}$<br>(0.276)            | $0.751^{**}$<br>(0.295)             | $0.464^{*}$<br>(0.282)              | $0.943^{***}$<br>(0.301)            | $\beta_{11} = \beta_{14}$<br>0.5503 |
| pay. x relative size quartiles<br>the part of the partiles of the partiles of the partiles of the particular par | 0.469***<br>(0.124)                 | 0.410*<br>(0.227)                   | 0.396*<br>(0.208)                   | $0.635^{***}$<br>(0.185)            | $\beta_{21} = \beta_{24}$<br>0.4406 |
| . x relat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.451^{***}$<br>(0.092)            | $0.291^{**}$<br>(0.137)             | 0.194<br>(0.177)                    | $0.168 \\ (0.148)$                  | $\beta_{31} = \beta_{34}$<br>0.0920 |
| fed 4 <sup>th</sup><br>CHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.247^{***}$<br>(0.061)            | $0.242^{***}$<br>(0.062)            | 0.089<br>(0.093)                    | -0.014<br>(0.125)                   | $\beta_{41} = \beta_{44}$<br>0.0525 |
| Control variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | same as                             | Table 2 Col                         | . 2 plus qua                        | rtile FE                            |                                     |
| Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | $\beta_{11} = \beta_{44}$           |                                     |                                     |                                     |
| R-squared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | 0.0001                              |                                     |                                     |                                     |
| F test<br>p value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\beta_{11} = \beta_{41}$<br>0.0008 | $\beta_{12} = \beta_{42}$<br>0.0854 | $\beta_{13} = \beta_{34}$<br>0.1969 | $\beta_{14} = \beta_{44}$<br>0.0028 |                                     |

Table 5: Relative Payment Size vs. Cash-on-Hand

| Dep. var.: $\Delta c_{it}$ ,<br>nondurables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PFD pa<br>1 <sup>st</sup>                                                                      | yments x cas<br>2 <sup>nd</sup>                    | sh-on-hand o $3^{ m rd}$                                  | $4^{\text{th}}$                                                                          | F test<br>p value                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| PFD pay. x relative size quartiles<br>the construction of the constru | $\begin{array}{c} 1.177^{***} \\ (0.276) \\ 0.469^{***} \\ (0.124) \\ 0.451^{***} \end{array}$ | 0.751**<br>(0.295)<br>0.410*<br>(0.227)<br>0.291** | $0.464^{*}$<br>(0.282)<br>$0.396^{*}$<br>(0.208)<br>0.194 | $\begin{array}{c} 0.943^{***} \\ (0.301) \\ 0.635^{***} \\ (0.185) \\ 0.168 \end{array}$ | $\beta_{11} = \beta_{14} \\ 0.5503 \\ \beta_{21} = \beta_{24} \\ 0.4406 \\ \beta_{31} = \beta_{34}$ |
| PFD pay. xr<br>4<br>t <sub>t</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.092)<br>0.247***<br>(0.061)                                                                 | $(0.137) \\ 0.242^{***} \\ (0.062)$                | $(0.177) \\ 0.089 \\ (0.093)$                             | (0.148)<br>-0.014<br>(0.125)                                                             | $\beta_{41} = \beta_{44}$<br>0.0525                                                                 |
| Control variables<br>Observations<br>R-squared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | same as                                                                                        | $\beta_{11} = \beta_{44}$<br>0.0001                |                                                           |                                                                                          |                                                                                                     |
| F test<br>p value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\beta_{11} = \beta_{41}$<br>0.0008                                                            | $\beta_{12} = \beta_{42}$<br>0.0854                | $\beta_{13} = \beta_{34}$<br>0.1969                       | $\beta_{14} = \beta_{44}$<br>0.0028                                                      |                                                                                                     |

| Table 5: Relati | e Payment Size va | s. Cash-on-Hand |
|-----------------|-------------------|-----------------|
|-----------------|-------------------|-----------------|

### Main findings

- 1. Large average excess sensitivity even to large payments
- 2. Potential-loss statistic predicts higher-income HHs MPCs
- 3. Low liquidity-to-income continues to predict higher MPCs
- 4. Actual ex-post losses are similar and small  $\Rightarrow$  near-rationality

### Implications and next steps

- Modeling near-rational behavior is important next step: Why do high-income HHs spend dividend?
- Targeting low-income HHs might not be the only way to stimulate the economy

**THANK YOU!** 

### Main findings

- 1. Large average excess sensitivity even to large payments
- 2. Potential-loss statistic predicts higher-income HHs MPCs
- 3. Low liquidity-to-income continues to predict higher MPCs
- 4. Actual ex-post losses are similar and small  $\Rightarrow$  near-rationality

### Implications and next steps

- Modeling near-rational behavior is important next step: Why do high-income HHs spend dividend?
- Targeting low-income HHs might not be the only way to stimulate the economy

### THANK YOU!

## Main findings

- 1. Large average excess sensitivity even to large payments
- 2. Potential-loss statistic predicts higher-income HHs MPCs
- 3. Low liquidity-to-income continues to predict higher MPCs
- 4. Actual ex-post losses are similar and small  $\Rightarrow$  near-rationality

### Implications and next steps

- Modeling near-rational behavior is important next step: Why do high-income HHs spend dividend?
- Targeting low-income HHs might not be the only way to stimulate the economy

## Main findings

- 1. Large average excess sensitivity even to large payments
- 2. Potential-loss statistic predicts higher-income HHs MPCs
- 3. Low liquidity-to-income continues to predict higher MPCs
- 4. Actual ex-post losses are similar and small  $\Rightarrow$  near-rationality

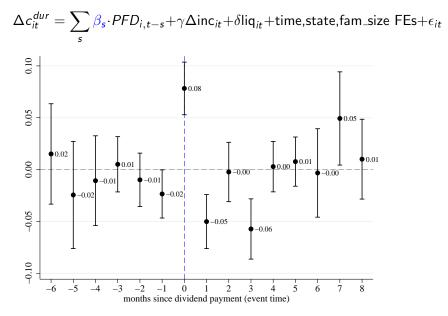
### Implications and next steps

- Modeling near-rational behavior is important next step: Why do high-income HHs spend dividend?
- Targeting low-income HHs might not be the only way to stimulate the economy

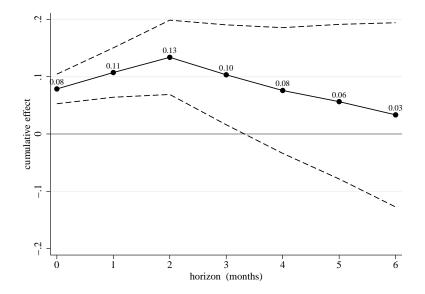
## THANK YOU!

# Appendix

# **Disaggregated spending:** Excess sensitivity across categories, including strictly nondurables


|                                  | B. Disaggregated and Total Expenditures |           |                 |                |                    |  |
|----------------------------------|-----------------------------------------|-----------|-----------------|----------------|--------------------|--|
| Specification:                   | same as in (4)                          |           |                 |                |                    |  |
| Dependent variable:              | food at home                            | food away | kids activities | cash withdraw. | total expenditures |  |
|                                  | (6)                                     | (7)       | (8)             | (9)            | (10)               |  |
| Permanent Fund Dividend payments | 0.066***                                | 0.019***  | 0.007**         | 0.028*         | 0.727***           |  |
|                                  | (0.009)                                 | (0.005)   | (0.003)         | (0.014)        | (0.130)            |  |
| Observations                     | 47,787                                  | 47,787    | 47,787          | 47,787         | 47,787             |  |
| R-squared                        | 0.691                                   | 0.640     | 0.526           | 0.313          | 0.675              |  |

#### Table 2: Excess Sensitivity


### Following the money:

- I estimate that the marginal tax rate on PFD income in the PFW sample is 22% (due in the following year).
- ► The MPC of total expenditures is 73%.
- The remaining 5% remains in the bank account or is transferred to investment account.

### **Durables:** Small anticipation effect



### Durables: Cumulative MPC - strong intertemporal substitution



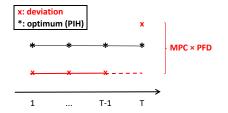
### Robustness

| Dependent variable: $\Delta c_{it}$ or $\Delta ln(c_{it})$ ,<br>quarterly nondurables | baseline<br>(1)     | all PFDs, incl.<br>checks & delayed<br>(2) | only partial<br>PFD received<br>(3) | only full<br>PFD received<br>(4) | incl. Alaskans<br>without PFD<br>(5) | family size<br>= # of users<br>(6) | Alaskans<br>only<br>(7) | $using \\ \Delta ln(c_{it}) \\ (8)$ |
|---------------------------------------------------------------------------------------|---------------------|--------------------------------------------|-------------------------------------|----------------------------------|--------------------------------------|------------------------------------|-------------------------|-------------------------------------|
| PFD payments                                                                          | 0.264***<br>(0.044) | 0.286***<br>(0.043)                        | 0.257***<br>(0.088)                 | 0.268***<br>(0.046)              | 0.285***<br>(0.041)                  | $0.288^{***}$<br>(0.055)           | 0.252***<br>(0.065)     |                                     |
| PFD payments / family income                                                          |                     |                                            |                                     |                                  |                                      |                                    |                         | $0.319^{***}$<br>(0.093)            |
| Family size FE                                                                        | Yes                 | Yes                                        | Yes                                 | Yes                              | Yes                                  | Yes                                | Yes                     | Yes                                 |
| Time FE                                                                               | Yes                 | Yes                                        | Yes                                 | Yes                              | Yes                                  | Yes                                | Yes                     | Yes                                 |
| State FE                                                                              | Yes                 | Yes                                        | Yes                                 | Yes                              | Yes                                  | Yes                                |                         | Yes                                 |
| Liquid assets                                                                         | Yes                 | Yes                                        | Yes                                 | Yes                              | Yes                                  | Yes                                | Yes                     | Yes                                 |
| Current income (level and change)                                                     | Yes                 | Yes                                        | Yes                                 | Yes                              | Yes                                  | Yes                                | Yes                     | Yes                                 |
| Permanent income                                                                      | Yes                 | Yes                                        | Yes                                 | Yes                              | Yes                                  | Yes                                | Yes                     | Yes                                 |
| Household characteristics                                                             | Yes                 | Yes                                        | Yes                                 | Yes                              | Yes                                  | Yes                                | Yes                     | Yes                                 |
| Observations                                                                          | 44,577              | 45,407                                     | 32,540                              | 41,454                           | 50,210                               | 35,046                             | 16,012                  | 44,577                              |
| R-squared                                                                             | 0.129               | 0.129                                      | 0.128                               | 0.125                            | 0.128                                | 0.127                              | 0.139                   | 0.223                               |

Table A.4: Excess Sensitivity - Robustness

### Derivig Potential Loss of Deviating from Smoothing:

Standard, frictionless life-cycle model's optimal consumption plan


$$c_w^{pih} = \arg\max_c \left\{ U(c) = \sum_t \delta^t u(c_t) : p'c \le w \right\}$$

Money-metric proportional wealth loss (Gabaix Laibson 2002):

- ► 2nd-order approx. of utility U around optimum c<sup>pih</sup><sub>w</sub> and evaluating at deviation č<sub>w</sub> that satisfies budget constraint, p'č<sub>w</sub> = w
- ▶ 1st-order approx. of  $U(c_w^{pih})$  in wealth w, and evaluating at  $U(c_{\tilde{w}}^{pih}) = U(\tilde{c}_w)$  with  $u(c) = c^{1-\gamma}/(1-\gamma)$  and  $\omega_t^{pih} = \frac{\delta^t u(c_t^{pih})}{U(c^{pih})}$

$$Loss(\tilde{c}, c^{pih}) \equiv -\frac{\tilde{w} - w}{w} \approx \frac{\gamma}{2} \sum_{t} \omega_{t}^{pih} \left(\frac{\tilde{c}_{t} - c_{t}^{pih}}{c_{t}^{pih}}\right)^{2}$$

For simplicity, assume finite horizon and  $r = \delta = 0 \Rightarrow c_{it}^{pih} = c_i^{pih}$ 



Start with hand-to-mouth (MPC=1) as extreme alternative plan:

$$\tilde{c}_{it}^{htm} = \begin{cases} c_i^{pih} - \frac{PFD_i}{T} & \text{if no dividend paid} \\ c_i^{pih} + (1 - \frac{1}{T}) \cdot PFD_i & \text{if dividend paid} \end{cases}$$

Observed deviation  $\tilde{c}_i$  is scaled version, ie " $\tilde{c}_{it} = MPC_i \times c_{it}^{htm}$ "

$$\Rightarrow Loss(\tilde{c}_i, c_i^{phi}) \approx (MPC_i)^2 \times \left(\frac{PFD_i}{c_i^{phi}}\right)^2 \cdot \frac{\gamma}{2} \cdot \frac{T-1}{T^2}$$