Shopping for Lower Sales Tax Rates

Scott R. Baker Stephanie Johnson Lorenz Kueng

Northwestern University and NBER

January 22, 2018

Research Question

How do households respond to a pre-announced price change induced by a sales tax increase?

- Do households pay attention?
- What adjustment margins do they use?
- How large are the reactions?

Recent research looks at deviations from full optimization

- allowing for inattention (eg non-salience, "sparse" information,)
- allowing for systematic mistakes (eg optimization fric., biases, ...)

These deviations have profound effects for public economic and macroeconomics.

Research Question

How do households respond to a pre-announced price change induced by a sales tax increase?

- Do households pay attention?
- What adjustment margins do they use?
- How large are the reactions?

Recent research looks at deviations from full optimization

- allowing for inattention (eg non-salience, "sparse" information,)
- allowing for systematic mistakes (eg optimization fric., biases, ...)

These deviations have profound effects for public economic and macroeconomics.

Public Economics: If consumers do not fully respond to sales tax changes because of non-salience, then

- sales taxes are an efficient form of taxation
- optimal sales tax rates should be higher than under full salience

Macroeconomics: If sales tax changes are not salient, then

- sales tax changes might not be an efficient tool to stimulate economy
 - eg during a crisis when monetary policy is against the Zero Lower Bound (ZLB)

Two Contributions

1. Comprehensive analysis of consumer response to sales taxes

Why sales taxes? Sales taxes are particularly complex in the US

- taxes not included in most posted prices
- some goods exempt & exemption rules vary by state
- ▶ fiscal federalism → many tax jurisdictions (state, county, local, and special districts)

 \Rightarrow Powerful setting for detecting deviations from 'optimal' behavior

2. Novel, parsimonious model of shopping behavior

- Highlights relationship between
 - short-run effects relevant for macroeconomics (stimulus)
 - long-run effects relevant for public econ (optimality, incidence)
- Use model to evaluate economic magnitude of response with reservation wage

Two Contributions

1. Comprehensive analysis of consumer response to sales taxes

Why sales taxes? Sales taxes are particularly complex in the US

- taxes not included in most posted prices
- some goods exempt & exemption rules vary by state
- ▶ fiscal federalism \rightarrow many tax jurisdictions (state, county, local, and special districts)

 \Rightarrow Powerful setting for detecting deviations from 'optimal' behavior

2. Novel, parsimonious model of shopping behavior

- Highlights relationship between
 - short-run effects relevant for macroeconomics (stimulus)
 - long-run effects relevant for public econ (optimality, incidence)
- Use model to evaluate economic magnitude of response with reservation wage

Two Contributions

1. Comprehensive analysis of consumer response to sales taxes

Why sales taxes? Sales taxes are particularly complex in the US

- taxes not included in most posted prices
- some goods exempt & exemption rules vary by state
- ▶ fiscal federalism \rightarrow many tax jurisdictions (state, county, local, and special districts)

 \Rightarrow Powerful setting for detecting deviations from 'optimal' behavior

2. Novel, parsimonious model of shopping behavior

- Highlights relationship between
 - short-run effects relevant for macroeconomics (stimulus)
 - long-run effects relevant for public econ (optimality, incidence)
- Use model to evaluate economic magnitude of response with reservation wage

1. Consumers respond to sales tax changes using

- inter-temporal substitution
- jurisdictional tax arbitrage
- increased online spending

2. Both taxable and exempt spending respond

- Seemingly irrational behavior is consistent with a rational model with
 - storability of goods (ie inventory management)
 - shopping trip complementarity
- We provide evidence of new trips-complementarity mechanism
 - Store traffic: consumers reduce number of store visits
 - Revealed cost approach: infrequent vs. frequent shoppers
 - 'Placebo tests': cases with low trips complementarity

- 1. Consumers respond to sales tax changes using
 - inter-temporal substitution
 - jurisdictional tax arbitrage
 - increased online spending

2. Both taxable and exempt spending respond

- Seemingly irrational behavior is consistent with a rational model with
 - storability of goods (ie inventory management)
 - shopping trip complementarity
- We provide evidence of new trips-complementarity mechanism
 - Store traffic: consumers reduce number of store visits
 - Revealed cost approach: infrequent vs. frequent shoppers
 - 'Placebo tests': cases with low trips complementarity

- 1. Consumers respond to sales tax changes using
 - inter-temporal substitution
 - jurisdictional tax arbitrage
 - increased online spending

2. Both taxable and exempt spending respond

- Seemingly irrational behavior is consistent with a rational model with
 - storability of goods (ie inventory management)
 - shopping trip complementarity
- We provide evidence of new trips-complementarity mechanism
 - Store traffic: consumers reduce number of store visits
 - Revealed cost approach: infrequent vs. frequent shoppers
 - Placebo tests': cases with low trips complementarity

- 3. Sales taxes are both an efficient tax and an effective stimulus tool!
 - efficient tax b/c small consumption elasticity (not b/c sales tax is not salient)
 - effective stimulus tool b/c large spending elasticity

Literature

► Public Finance

- more US-focused (sales tax), focus on tax (non-)salience
- recently: implications of non-salience for optimal taxation
 Chetty Looney Kroft (2009), Finkelstein (2009), Cabral Hoxby (2011), Feldman Ruffle (2015), Farhi Gabaix (2016), Agarwal Marwell McGranahan (2017), ...

Macro

- focus on estimating EIS (inter-temporal substitution)
- mostly international studies using one-time VAT change
- assumes (and relies on) salience of sales taxes/VATs
 Mian Sufi (2012), Cashin (2015), D'Acunto Hoang Weber (2016), Gabaix (2016), ...

Industrial Organization

- demand elasticity: typically uses unexpected, temporary sales
- ▶ focus on individual product sales, not store-wide sales ⇒ assumes that sales has no effect on store traffic

Hendel Nevo (2006, 2013), Einav Knoepfle Levin Sundaresan (2014), ...

Outline

- 1. Data
- 2. Research Design
 - Fiscal lag: newspaper coverage
 - Fiscal foresight: Google searches
- 3. Spending and Shopping Response
 - Taxable spending
 - Intertemporal substitution
 - Shopping frequency
 - Tax-exempt spending
- 4. Shopping Model
- 5. Shopping Complementarity
 - Revealed cost approach: infrequent vs. frequent shoppers
 - Trip complementarity taxable/exempt mix
 - Online shopping: low complementarity
- 6. Additional Evidence of Optimizing Behavior
 - Persistent tax incentives prompt long-run responses
 - Cross-border and online shopping
 - Tax salience and announcement effects
 - Newspaper coverage and ballot initiatives

Sales Tax Data

- Zipcode-level sales taxes from Thomson Reuters
 - four layers of tax jurisdictions (state, county, city, special districts)
 - monthly 2008-2015
- State taxes 2003-2016, partially hand collected
- ho pprox 50 state and over 2,000 distinct local changes
 - $\Delta \tau_{local}$: μ =0.54%, med=0.5%
 - $\Delta \tau_{state}$: μ =0.62%, med=0.5%

Sales Tax Rates (maximum rate 2008-15)

(white ZIP codes have missing sales tax rates or are not covered by Nielsen)

Sales Tax Rate Changes (max. rate change 2008-15)

(white ZIP codes have missing sales tax rates or are not covered by Nielsen)

Spending Data: Nielsen Consumer & Retailer Panels

Nielsen Consumer Panel (NCP)

- ▶ 150,000+ HH panel with detailed retail spending micro-data, 2004-2014
- ▶ HHs use scanners and diaries to record purchases at UPC level
- Covers groceries, pharmacy items, small home furnishings, electronics, kitchenware, ...

Nielsen Retail Scanner Panel (NRP)

Store-level sales at UPC level, 2006-2014

All results shown use *pre-tax* prices and spending

No mechanical effect of sales tax on outcomes

Spending Data: Nielsen Consumer & Retailer Panels

Nielsen Consumer Panel (NCP)

- ▶ 150,000+ HH panel with detailed retail spending micro-data, 2004-2014
- ▶ HHs use scanners and diaries to record purchases at UPC level
- Covers groceries, pharmacy items, small home furnishings, electronics, kitchenware, ...

Nielsen Retail Scanner Panel (NRP)

Store-level sales at UPC level, 2006-2014

All results shown use pre-tax prices and spending

No mechanical effect of sales tax on outcomes

Outline

- 1. Data
- 2. Research Design
 - Fiscal lag: newspaper coverage
 - Fiscal foresight: Google searches
- 3. Spending and Shopping Response
 - Taxable spending
 - Intertemporal substitution
 - Shopping frequency
 - Tax-exempt spending
- 4. Shopping Model
- 5. Shopping Complementarity
 - Revealed cost approach: infrequent vs. frequent shoppers
 - Trip complementarity taxable/exempt mix
 - Online shopping: low complementarity
- 6. Additional Evidence of Optimizing Behavior
 - Persistent tax incentives prompt long-run responses
 - Cross-border and online shopping
 - Tax salience and announcement effects
 - Newspaper coverage and ballot initiatives

Approach

 Use high frequency of tax and spending data and exploit fiscal lag

Important

- These are <u>not shocks</u> (ie tax news/information shocks)
- but predetermined tax changes
 - ⇒ Captures substitution effects, not income/wealth effects (*if* consumers are forward-looking optimizers)
 - i.e., transition to a new steady state ('MIT shock')
- Compare HHs in treated with untreated jurisdictions

 $\Delta \ln y_{ht} = \beta \cdot \Delta \ln(1 + \tau_{jt}) + T_t + HH_h + \lambda' z_{ht} + \epsilon_{ht}$

- au: sales tax rate
- h: household
- t: month
- j: household's tax jurisdiction
- SEs clustered at level of tax jurisdiction

Approach

 Use high frequency of tax and spending data and exploit fiscal lag

Important

- These are <u>not shocks</u> (ie tax news/information shocks)
- but predetermined tax changes
 - ⇒ Captures substitution effects, not income/wealth effects (*if* consumers are forward-looking optimizers)
 - i.e., transition to a new steady state ('MIT shock')
- Compare HHs in treated with untreated jurisdictions

 $\Delta \ln y_{ht} = \beta \cdot \Delta \ln(1 + \tau_{jt}) + T_t + HH_h + \lambda' z_{ht} + \epsilon_{ht}$

- au: sales tax rate
- h: household
- t: month
- j: household's tax jurisdiction
- SEs clustered at level of tax jurisdiction

Approach

 Use high frequency of tax and spending data and exploit fiscal lag

Important

- These are <u>not shocks</u> (ie tax news/information shocks)
- but predetermined tax changes
 - ⇒ Captures substitution effects, not income/wealth effects (*if* consumers are forward-looking optimizers)

i.e., transition to a new steady state ('MIT shock')

Compare HHs in treated with untreated jurisdictions

 $\Delta \ln y_{ht} = \beta \cdot \Delta \ln(1 + \tau_{jt}) + T_t + HH_h + \lambda' z_{ht} + \epsilon_{ht}$

- au: sales tax rate
- h: household
- t: month
- j: household's tax jurisdiction
- SEs clustered at level of tax jurisdiction

Fiscal Lag: Evidence from # of Newspaper Articles

- Announcements/news occur several months in advance
- Hence, at the time of the change this is not a shock (if salient)
 - Are HHs aware of these tax changes?

Fiscal Lag: Evidence from # of Newspaper Articles

- Announcements/news occur several months in advance
- Hence, at the time of the change this is not a shock (if salient)
 - ► Are HHs aware of these tax changes?

Fiscal Foresight: Evidence from Google Searches

Users clearly pay attention to upcoming sales tax rate changes

Do they also change their spending behavior?

Fiscal Foresight: Evidence from Google Searches

Users clearly pay attention to upcoming sales tax rate changes

Do they also change their spending behavior?

Taxable Spending Response: Households

Nielsen Consumer Panel (NCP) Data source: Dependent variable: A. Main Analysis log change of monthly taxable retail spending State tax Sales tax Baseline rate only cuts (1)(2)(3)-2.036*** -1.719* $\Delta \ln(1 + \text{total sales tax rate})$ (0.648)(0.965)-2.185** $\Delta \ln(1 + \text{state sales tax rate})$ (1.031)Period FE Ves Ves Yes Household FE Yes Yes Yes Household characteristics Local unemployment rate State-period FE 4.137,927 Observations 5.928.4684.114.413 R-squared 0.014 0.013 0.014

Table 1: Response of Taxable Spending to a Sales Tax Increase

- Consumer spending responds to both total- and state-level changes
- Two main concerns
 - 1. Sensitivity of estimates to local conditions
 - 2 Representativeness of Nielsen HHs

Taxable Spending Response: Households

Data source:	Nielsen Consumer Panel (NCP)						
Dependent variable: log change of monthly taxable retail spending	A. Main Analysis		B. Robustness				
	Baseline	State tax rate only	Sales tax cuts	Household charac.	Business cycle	Drop Great Recession	State-period FE
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
$\Delta ln(1 + total sales tax rate)$	-2.036*** (0.648)		-1.719* (0.965)	-2.034*** (0.648)	-2.082*** (0.648)	-2.012** (0.882)	-2.269*** (0.701)
$\Delta {\rm ln}(1 + {\rm state \ sales \ tax \ rate})$		-2.185^{**} (1.031)					
Period FE Household FE Household characteristics Local unemployment rate State-period FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes Yes
Observations R-squared	$4,137,927 \\ 0.014$	5,928,468 0.013	$\begin{array}{c} 4,114,413 \\ 0.014 \end{array}$	$4,137,927 \\ 0.014$	$^{4,137,927}_{0.014}$	$3,285,747 \\ 0.015$	$4,137,886 \\ 0.015$

Table 1: Response of Taxable Spending to a Sales Tax Increase

- Consumer spending responds to both total- and state-level changes
- Two main concerns
 - 1. Sensitivity of estimates to local conditions
 - 2. Representativeness of Nielsen HHs

Taxable Spending Response: Retailer Sales

Data source:	Nielsen Retailer Panel (NRP)				
Dependent variables: log change of monthly	C. Store Sales				
taxable retail sales	Baseline	Business cycle	State-period FE		
	(10)	(11)	(12)		
$\Delta \ln(1 + \text{total sales tax rate})$	-2.814**	-2.794**	-3.265**		
	(1.368)	(1.368)	(1.440)		
Period FE	Yes	Yes			
Store FE	Yes	Yes	Yes		
Local unemployment rate		Yes	Yes		
State-period FE			Yes		
Observations	2,461,491	2,461,491	2,461,491		
R-squared	0.140	0.140	0.150		

Table 1: Response of Taxable Spending to a Sales Tax Increase

- Consumer spending responds to both total- and state-level changes
- Two main concerns
 - 1 Sensitivity of estimates to local conditions
 - 2. Representativeness of Nielsen HHs

Quantity Response Similar as Spending

Spending response not driven by substitution to lower quality

	A. Quantity Response		
Dependent variable:	∆ln(taxable)	∆ln(taxable)	
	(1)	(3)	
$\Delta ln(1 + total sales tax rate)$	-2.330*** (0.479)		
$\Delta ln(1 + state sales tax rate)$		-2.245** (0.908)	
Period FE Household FE Product FE ZIP3 FE	Yes Yes	Yes Yes	
Observations R-squared	4,140,969 0.014	5,928,529 0.013	

What is driving these large responses? Two main candidates:

- Passive behavior: Inattention and delayed income effects
- Active behavior: Attention and substitution effects

Quantity Response Similar as Spending

Spending response not driven by substitution to lower quality

	A. Quantity Response		
Dependent variable:	∆ln(taxable)	∆ln(taxable)	
	(1)	(3)	
$\Delta ln(1 + total sales tax rate)$	-2.330*** (0.479)		
$\Delta ln(1 + state sales tax rate)$		-2.245** (0.908)	
Period FE Household FE Product FE ZIP3 FE	Yes Yes	Yes Yes	
Observations R-squared	4,140,969 0.014	5,928,529 0.013	

What is driving these large responses? Two main candidates:

- Passive behavior: Inattention and delayed income effects
- Active behavior: Attention and substitution effects

Substitution Margins

The main margins of adjustment are

- 1. inter-temporal substitution
- 2. online shopping
- 3. cross-border shopping
- 4. consumption substitution to exempt goods

We first focus on intertemporal substitution ...

- available to all consumers
- hence, direct test of forward-looking, attentive behavior
- ... before analyzing online and cross-border shopping
 - incentives change only after sales tax change
 - cross-border shopping very costly for most consumers (at state or ZIP-3 level)

Substitution Margins

The main margins of adjustment are

- 1. inter-temporal substitution
- 2. online shopping
- 3. cross-border shopping
- 4. consumption substitution to exempt goods

We first focus on intertemporal substitution ...

- available to all consumers
- hence, direct test of forward-looking, attentive behavior
- ... before analyzing online and cross-border shopping
 - incentives change only after sales tax change
 - cross-border shopping very costly for most consumers (at state or ZIP-3 level)

Intertemporal Substitution

- Only effect in the short run
 - characteristic of inventory demand
 - suggests substitution of spending, not consumption

 \Rightarrow inspect inventory demand: storability and shopping frequency

Table 2: St	torability and	Intertemporal	. Su	bstitution
-------------	----------------	---------------	------	------------

	C. Poduct Groups by Purcha	C. Poduct Groups by Purchase Frequency		
	Non- storability : avg. # of pu	Non-storability: avg. # of purchases/month		
	(6)	(7)		
$\Delta \ln(1 + \text{sales tax rate})$	CARBONATED BEVERAGES	1.942		
	CANDY	1.700		
$\Delta \ln(1 + \text{sales tax rate}) \times \text{Storability}$	PAPER PRODUCTS	1.615		
- Quartile 2	PET FOOD	1.382		
	ICE CREAM, NOVELTIES	0.967		
- Quartile 3	SOFT DRINKS, NON-CARB.	0.906		
	DETERGENTS	0.726		
- Quartile 4	WRAPPING MATERIALS	0.612		
	STATIONERY, SCHOOL SUP.	0.604		
$\Delta \ln(1 + \text{sales tax rate})$, lead				
$\Delta \ln(1 + \text{sales tax rate}) \times \text{Storability, lead}$				
- Quartile 2	FRAGRANCES - WOMEN	0.081		
	PHOTOGRAPHIC SUPPLIES	0.076		
- Quartile 3	MEN'S TOILETRIES	0.075		
	CANNING, FREEZING SUP.	0.069		
- Quartile 4	TOYS & SPORTING GOODS	0.065		
	GRT CARDS/PARTY NEEDS	0.049		
	SEWING NOTIONS	0.044		
Period FE	SEASONAL	0.042		
Product FE	SHOE CARE	0.041		
State FE				
Observations	Sample mean (weighted)	0.846		
R-squared	Sample standard deviation	0.602		

Dependent variable:	B. Response by Storability	C. Poduct Groups by Purchase Frequency Non-storability: avg. # of purchases/month		
by product group and state	Quartiles			
	(5)	(6)	(7)	
Aln(1 + sales tax rate)	-1.476	CARBONATED BEVERAGES	1.942	
	(1.324)	CANDY	1.700	
$\Delta \ln(1 + \text{sales tax rate}) \times \text{Storability}$		PAPER PRODUCTS	1.615	
- Quartile 2	1.652*	PET FOOD	1.382	
-	(0.916)	ICE CREAM, NOVELTIES	0.967	
- Quartile 3	-5.543*	SOFT DRINKS, NON-CARB.	0.906	
	(2.911)	DETERGENTS	0.726	
- Quartile 4	-12.678**	WRAPPING MATERIALS	0.612	
	(6.272)	STATIONERY, SCHOOL SUP.	0.604	
$\Delta \ln(1 + \text{sales tax rate})$, lead	0.015			
× ,,	(0.658)			
$\Delta \ln(1 + \text{sales tax rate}) \times \text{Storability},$	lead			
- Quartile 2	-0.300	FRAGRANCES - WOMEN	0.081	
	(0.489)	PHOTOGRAPHIC SUPPLIES	0.076	
- Quartile 3	1.951*	MEN'S TOILETRIES	0.075	
	(1.127)	CANNING, FREEZING SUP.	0.069	
- Quartile 4	14.910*	TOYS & SPORTING GOODS	0.065	
-	(8.885)	GRT CARDS/PARTY NEEDS	0.049	
		SEWING NOTIONS	0.044	
Period FE	Yes	SEASONAL	0.042	
Product FE	Yes	SHOE CARE	0.041	
State FE	Yes			
Observations	307,520	Sample mean (weighted)	0.846	
R-squared	0.064	Sample standard deviation	0.602	

Table 2: Storability and Intertemporal Substitution
Dependent variable:	B. Response by Storability	C. Poduct Groups by Purchase Frequency Non-storability: avg. # of purchases/month		
by product group and state	Quartiles			
	(5)	(6)	(7)	
$\Delta \ln(1 + \text{sales tax rate})$	-1.476	CARBONATED BEVERAGES	1.942	
	(1.324)	CANDY	1.700	
$\Delta \ln(1 + \text{sales tax rate}) \times \text{Storability}$	7	PAPER PRODUCTS	1.615	
- Quartile 2	1.652*	PET FOOD	1.382	
	(0.916)	ICE CREAM, NOVELTIES	0.967	
- Quartile 3	-5.543*	SOFT DRINKS, NON-CARB.	0.906	
	(2.911)	DETERGENTS	0.726	
- Quartile 4	-12.678**	WRAPPING MATERIALS	0.612	
	(6.272)	STATIONERY, SCHOOL SUP.	0.604	
$\Delta \ln(1 + \text{sales tax rate})$, lead	0.015			
	(0.658)			
$\Delta \ln(1 + \text{sales tax rate}) \times \text{Storability}$, lead			
- Quartile 2	-0.300	FRAGRANCES - WOMEN	0.081	
	(0.489)	PHOTOGRAPHIC SUPPLIES	0.076	
- Quartile 3	1.951*	MEN'S TOILETRIES	0.075	
	(1.127)	CANNING, FREEZING SUP.	0.069	
- Quartile 4	14.910*	TOYS & SPORTING GOODS	0.065	
-	(8.885)	GRT CARDS/PARTY NEEDS	0.049	
	- *	SEWING NOTIONS	0.044	
Period FE	Yes	SEASONAL	0.042	
Product FE	Yes	SHOE CARE	0.041	
State FE	Yes			
Observations	307,520	Sample mean (weighted)	0.846	
R-squared	0.064	Sample standard deviation	0.602	

Table 2:	Storability	and Intertempora	l Substitution

Shopping Behavior and Intertemporal Substitution

Prediction: If intertemporal substitution of *consumption* is low, then increase in inventory should decrease shopping frequency.

Shopping Behavior and Intertemporal Substitution

Prediction: If intertemporal substitution of *consumption* is low, then increase in inventory should decrease shopping frequency.

Data source:	Nielsen Consumer Panel (NCP)			
Dependent variable: log change of the number of	D. Shopping	Frequency (Lo	g # of Trips)	
monthly store visits	Baseline	Household charac.	Business cycle	
	(13)	(14)	(15)	
$\Delta \ln(1 + \text{total sales tax rate})$	-1.479***	-1.479***	-1.455***	
	(0.449)	(0.449)	(0.449)	
Period FE	Yes	Yes	Yes	
Household FE	Yes	Yes	Yes	
Household characteristics		Yes	Yes	
Local unemployment rate			Yes	
Observations	4,137,927	4,137,927	4,137,927	
R-squared	0.020	0.020	0.020	

Table 1: Response of	Shopping	Frequency	to a Sales	Tax 1	Increase
----------------------	----------	-----------	------------	-------	----------

Shopping fixed costs have implication for exempt goods

- If most stores sell both exempt and taxable products, then HHs can save on future trips by also stocking up on exempt goods.
- \Rightarrow tax-exempt products are not a valid control!

Shopping fixed costs have implication for exempt goods

If most stores sell both exempt and taxable products, then HHs can save on future trips by also stocking up on exempt goods.

\Rightarrow tax-exempt products are not a valid control!

Data source:	Nielsen Consumer Panel (NCP)					
Dependent variable: log change of monthly	A. Main Analysis			B. Robustness		
exempt retail spending	Baseline	State tax rate only	Household charac.	Business cycle	State-period FE	
	(1)	(2)	(3)	(4)	(5)	
$\Delta ln(1 + total sales tax rate)$	-1.395*** (0.513)		-1.393^{***} (0.513)	-1.329^{***} (0.513)	-1.215^{**} (0.557)	
$\Delta ln(1 + state sales tax rate)$		-1.618** (0.656)				
Period FE Household FE Household characteristics Local unemployment rate State-period FE	Yes Yes	Yes Yes	Yes Yes Yes	Yes Yes Yes Yes	Yes Yes Yes	
Observations R-squared	$4,095,406 \\ 0.015$	5,865,177 0.014	$4,095,406 \\ 0.015$	$4,095,406 \\ 0.015$	$4,095,406 \\ 0.016$	

Table 3: Tax-Exempt Spending Response to a Sales Tax Increase

Shopping Complementarity

- Dynamics of exempt spending similar to taxable
- Consistent with shopping complementarity due to fixed costs

Outline

- 1. Data
- 2. Research Design
 - Fiscal lag: newspaper coverage
 - Fiscal foresight: Google searches
- 3. Spending and Shopping Response
 - Taxable spending
 - Intertemporal substitution
 - Shopping frequency
 - Tax-exempt spending
- 4. Shopping Model
- 5. Shopping Complementarity
 - Revealed cost approach: infrequent vs. frequent shoppers
 - Trip complementarity taxable/exempt mix
 - Online shopping: low complementarity
- 6. Additional Evidence of Optimizing Behavior
 - Persistent tax incentives prompt long-run responses
 - Cross-border and online shopping
 - Tax salience and announcement effects
 - Newspaper coverage and ballot initiatives

Cons-Savings Model with Inventories and Shopping

Goal:

- Specify a parsimonious model with rational consumers that matches observed spending responses
- Use model to assess quantitatively economic magnitude of observed response using implicit reservation wage

Problem:

Standard inventory models (eg Baumol-Tobin) cannot easily deal with non-stationary problem due to anticipated price change

Solution: "Friedman meets Baumol-Tobin"

We derive a model of dynamic demand with multiple goods, fixed costs and inventory management (⇒ consumption ≠ spending)

Cons-Savings Model with Inventories and Shopping

Goal:

- Specify a parsimonious model with rational consumers that matches observed spending responses
- Use model to assess quantitatively economic magnitude of observed response using implicit reservation wage

Problem:

Standard inventory models (eg Baumol-Tobin) cannot easily deal with non-stationary problem due to anticipated price change

Solution: "Friedman meets Baumol-Tobin"

► We derive a model of dynamic demand with multiple goods, fixed costs and inventory management (⇒ consumption ≠ spending)

Cons-Savings Model with Inventories and Shopping Ingredients:

- 1. continuous time with transaction fixed costs κ per shopping trip \Rightarrow endogenous shopping intervals Δt_n ("trips response")
- 2. consumption of taxable and tax-exempt goods $(c_{ au}, c_{e})$
- 3. investment in risk-free asset a or in inventory of storable goods (s_{τ},s_e) with common depreciation rate δ
- 4. perfect foresight: consumers know of upcoming permanent sales tax increase at future date t_{τ}
 - no "announcement" (wealth) effect
 - "MIT shock"

Notation:

- $C(t) = [c_{\tau}(t)^{1-1/\eta} + c_e(t)^{1-1/\eta}]^{\frac{\eta}{\eta-1}}$: composite consumption
- $u(t) = C(t)^{1-1/\sigma}$ with utility $\int e^{-\rho t} u(t) dt$
- **S**_{t_n}: Beginning-of-period **inventory** to support C(t) during Δt_n
 - $K_{t_n} = \kappa + P_{t_n}(\tau) \cdot S_{t_n}$: total costs per transaction
 - inventory depreciates at constant rate, $\dot{S}(t) = -\delta S(t) C(t)$

Cons-Savings Model with Inventories and Shopping Ingredients:

- 1. continuous time with transaction fixed costs κ per shopping trip \Rightarrow endogenous shopping intervals Δt_n ("trips response")
- 2. consumption of taxable and tax-exempt goods $(c_{ au}, c_{e})$
- 3. investment in risk-free asset a or in inventory of storable goods (s_{τ},s_e) with common depreciation rate δ
- 4. perfect foresight: consumers know of upcoming permanent sales tax increase at future date t_{τ}
 - no "announcement" (wealth) effect
 - "MIT shock"

Notation:

- $C(t) = [c_{\tau}(t)^{1-1/\eta} + c_e(t)^{1-1/\eta}]^{\frac{\eta}{\eta-1}}$ composite consumption
- $u(t) = C(t)^{1-1/\sigma}$ with utility $\int e^{-\rho t} u(t) dt$
- **S**_{t_n} Beginning-of-period **inventory** to support C(t) during Δt_n
 - $K_{t_n} = \kappa + P_{t_n}(\tau) \cdot S_{t_n}$: total costs per transaction
 - inventory depreciates at constant rate, $\dot{S}(t) = -\delta S(t) C(t)$

- 1. pre-periods: shopping trips under the old lower tax rate
- 2. interim period: last shopping trip before tax increase
- 3. final stationary steady state

- 1. pre-periods: shopping trips under the old lower tax rate
- 2. interim period: last shopping trip before tax increase
- 3. final stationary steady state

- 1. pre-periods: shopping trips under the old lower tax rate
- 2. interim period: last shopping trip before tax increase
- 3. final stationary steady state

- 1. pre-periods: shopping trips under the old lower tax rate
- 2. interim period: last shopping trip before tax increase
- 3. final stationary steady state

- 1. pre-periods: shopping trips under the old lower tax rate
- 2. interim period: last shopping trip before tax increase
- 3. final stationary steady state

Tax Elasticities: Consumption, Shopping & Spending

► consumption elasticities (unobserved): $\varepsilon_{c_i} \equiv \frac{d \ln(c_i(t_{ss})/c_i(t_{ss-1}))}{d \ln(1+\tau_{t_s})}$

$$\varepsilon_{c_i} = -(\sigma - \eta)B_{\tau} - \eta \cdot 1_{\{i=\tau\}}$$

with taxable expenditure share $B_{\tau} = p_{\tau,t_{ss}}s_{\tau,t_{ss}}/(P_{t_{ss}}S_{t_{ss}})$ and Hicksian demand $c_{it} = b_i \cdot (p_{it}/P_t)^{-\eta}C_t = b_i p_{it}^{-\eta}P_t^{-(\sigma-\eta)} \cdot e^{\sigma(r-\rho)\Delta t}C_{t-1}/P_{t-1}^{-\sigma}$

- ► shopping trip elasticity (observed): $\varepsilon_{\Delta t_{ss-1}} \equiv \frac{d \ln(\Delta t_{ss}/\Delta t_{ss-1})}{d \ln(1+\tau_{tss})}$ $\varepsilon_{\Delta t_{ss-1}} = -\frac{B_{\tau}}{(\delta + r)\Delta t_{ss}}$
- ▶ spending elasticities (observed): $\varepsilon_{s_{i,t_{n-1}}} \equiv \frac{d \ln(\Delta t_n / \Delta t_{n-1})}{d \ln(1 + \tau_{t_n})}$

$$\varepsilon_{s_{i,t_{ss-1}}} \approx \varepsilon_{c_i} + \varepsilon_{\Delta t_{ss-1}}$$
$$\varepsilon_{s_{i,\infty}} \approx \varepsilon_{c_i}$$

We derive analytic expression of all tax elasticities:

tax elasticities

- Long-run (non)response of exempt spending implies $\eta \approx \sigma$
- Small difference in long-run responses implies both elasticities are small: $\eta = \sigma = 0.3$
- Fixed cost $\kappa =$ \$5.2 calibrated to match taxable response of -1.45% in month 0
- All other parameters are set to match steady state values (e.g., δ , r,...)

• Evaluation of economic magnitude of $\kappa =$ \$5.2

- 6 minutes per day spent on grocery shopping (ATUS)
- (median) average # of 6 (4) days between two grocery trips (Nielsen CP)
- additional travel time per grocery trip of 15 minutes

 \Rightarrow implies post-tax reservation wage of \$7–10

• Evaluation of economic magnitude of $\kappa =$ \$5.2

- 6 minutes per day spent on grocery shopping (ATUS)
- (median) average # of 6 (4) days between two grocery trips (Nielsen CP)
- additional travel time per grocery trip of 15 minutes
- \Rightarrow implies post-tax reservation wage of \$7–10

Outline

- 1. Data
- 2. Research Design
 - Fiscal lag: newspaper coverage
 - Fiscal foresight: Google searches
- 3. Spending and Shopping Response
 - Taxable spending
 - Intertemporal substitution
 - Shopping frequency
 - Tax-exempt spending
- 4. Shopping Model
- 5. Shopping Complementarity
 - Revealed cost approach: infrequent vs. frequent shoppers
 - Trip complementarity: taxable/exempt mix
 - Online shopping: low complementarity
- 6. Additional Evidence of Optimizing Behavior
 - Persistent tax incentives prompt long-run responses
 - Cross-border and online shopping
 - Tax salience and announcement effects
 - Newspaper coverage and ballot initiatives

Table 4: Evidence of Shopping Complementarity

Δ

Revealed Cost Approach

	frequent	shoppers	infrequent	shoppers
Dependent variable:	$\Delta \mathrm{ln}(\mathrm{exempt})$	$\Delta ln(taxable)$	$\Delta ln(exempt)$	$\Delta ln(taxable)$
	(1)	(2)	(3)	(4)
$\Delta \ln(1 + \text{sales tax rate})$				
Period FE Household FE				
Observations R-squared				

Table 4: Evidence of Shopping Complementarity

	frequent	shoppers	infrequent	shoppers
Dependent variable:	$\Delta \mathrm{ln}(\mathrm{exempt})$	$\Delta \ln(\text{taxable})$	$\Delta \mathrm{ln}(\mathrm{exempt})$	$\Delta \ln(\text{taxable})$
	(1)	(2)	(3)	(4)
$\Delta \ln(1 + \text{sales tax rate})$	-0.010 (0.756)	-2.202** (0.910)		
Period FE Household FE	Yes Yes	Yes Yes		
Observations R-squared	$1,086,921 \\ 0.016$	$1,091,667 \\ 0.017$		

A. Revealed Cost Approach

Table 4: Evidence of Shopping Complementarity

A. Revealed Cost Approach

	**			
	frequent	shoppers	infrequent	shoppers
Dependent variable:	$\Delta \mathrm{ln}(\mathrm{exempt})$	$\Delta \ln(\text{taxable})$	$\Delta \mathrm{ln}(\mathrm{exempt})$	$\Delta \ln(\text{taxable})$
	(1)	(2)	(3)	(4)
$\Delta \ln(1 + \text{sales tax rate})$	-0.010 (0.756)	-2.202** (0.910)	-2.236* (1.191)	-2.406* (1.451)
Period FE Household FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes
Observations R-squared	$1,086,921 \\ 0.016$	$1,091,667 \\ 0.017$	$934,657 \\ 0.022$	$951,\!890 \\ 0.020$

Similar evidence for online purchases and exempt/taxable mix

Table 4: Evidence of Shopping Complementarity

	B. Trip Com	plementarity	C. Online Purchases
	combined trips	separate trips	
Dependent variable:	$\Delta \mathrm{ln}(\mathrm{exempt})$	$\Delta \mathrm{ln}(\mathrm{exempt})$	
	(5)	(6)	
$\Delta \ln(1 + \text{sales tax rate})$	-2.109** (0.828)	-0.813 (1.16)	
Period FE Household FE	Yes Yes	Yes Yes	
Observations R-squared	$1,049,599 \\ 0.017$	$895,365 \\ 0.018$	

Trip Complementarity_i = $1 - \frac{\sum_{j} |T_{ij} - 0.5| \times 2}{\sum_{j} 1}$; 1 if trips 50/50 taxable/exempt, 0 if 100/0

Table 4: Evidence of Shopping Complementarity

	B. Trip Complementarity		C. Online	Purchases
	combined trips	separate trips		
Dependent variable:	$\Delta \mathrm{ln}(\mathrm{exempt})$	$\Delta \mathrm{ln}(\mathrm{exempt})$	$\Delta {\rm ln}({\rm exempt})$	$\Delta \ln(\text{taxable})$
	(5)	(6)	(7)	(8)
$\Delta \ln(1 + \text{sales tax rate})$	-2.109^{**} (0.828)	-0.813 (1.16)	0.145 (0.464)	1.592** (0.709)
Period FE	Yes	Yes	Yes	Yes
Household FE	Yes	Yes	Yes	Yes
Observations	1,049,599	895, 365	6,868,924	6,868,924
R-squared	0.017	0.018	0.004	0.005

Less shopping complementarity with online purchases ightarrow exempt goods respond less

-

Outline

- 1. Data
- 2. Research Design
 - Fiscal lag: newspaper coverage
 - Fiscal foresight: Google searches
- 3. Spending and Shopping Response
 - Taxable spending
 - Intertemporal substitution
 - Shopping frequency
 - Tax-exempt spending
- 4. Shopping Model
- 5. Shopping Complementarity
 - Revealed cost approach: infrequent vs. frequent shoppers
 - Trip complementarity taxable/exempt mix
 - Online shopping: low complementarity
- 6. Additional Evidence of Optimizing Behavior
 - Persistent tax incentives prompt long-run responses
 - Cross-border and online shopping
 - Tax salience and announcement effects
 - Newspaper coverage and ballot initiatives

Tax Avoidance Channels in Short- and Long-Run

- Cross-border shopping
 - Households who can shop in neighboring ZIP-3 increasingly do so
 - Elasticity of approximately 0.5 for those who do 20% of shopping cross-border
 - Magnitude similar to Davis Knoepfle TengSun Yannelis (2015) who utilize aggregate geographic data
- Online Shopping
 - Households substitute more to online shopping
 - ► Elasticity of **positive** 1.6
 - Magnitude similar to Baugh Ben-David Park (2017) when looking at sales on Amazon

Tax Avoidance Channels in Short- and Long-Run

- Cross-border shopping
 - Households who can shop in neighboring ZIP-3 increasingly do so
 - Elasticity of approximately 0.5 for those who do 20% of shopping cross-border
 - Magnitude similar to Davis Knoepfle TengSun Yannelis (2015) who utilize aggregate geographic data
- Online Shopping
 - Households substitute more to online shopping
 - Elasticity of **positive** 1.6
 - Magnitude similar to Baugh Ben-David Park (2017) when looking at sales on Amazon

Long-Run Tax Incentives: Cross-Border Shopping

Table 5: Persistent Tax Incentives

	A. Fraction Spent in Alternative Tax Jurisdiction				
Dependent variable: $\Delta \ln(\text{frac. spent in alt. ZIP3})$	short-run re	long-run $(12m)$			
	(1)	(2)	(5)		
$\Delta \ln(1 + \text{total sales tax rate})$	-0.075 (0.072)	-0.182^{***} (0.056)	-0.674^{***} (0.093)		
$\Delta \ln(1 + \text{total sales tax rate})$ \times avg. fraction in alt. ZIP3		1.497 (0.951)	5.484*** (1.507)		
Period FE Household FE	Yes Yes	Yes Yes	Yes Yes		
Observations R-squared	$4,231,065 \\ 0.005$	$4,231,065 \\ 0.005$	2,510,373 0.119		
Average of interaction variable	1	0.079	0.079		

Long-Run Tax Incentives: Online Shopping

-

Table 5: Persistent Tax Incentives

	B. Online Spending		
Dependent variable: $\Delta \ln(\text{online spending})$	short-run	long-run	
	(7)	(8)	
$\Delta \ln(1 + \text{state sales tax rate})$	1.703** (0.824)	1.591** (0.791)	
Deried FF	Vac	Voc	
Household FE	Yes	Yes	
Observations R-squared	6,868,924 0.005	$3,010,794 \\ 0.044$	

Outline

- 1. Data
- 2. Research Design
 - Fiscal lag: newspaper coverage
 - Fiscal foresight: Google searches
- 3. Spending and Shopping Response
 - Taxable spending
 - Intertemporal substitution
 - Shopping frequency
 - Tax-exempt spending
- 4. Shopping Model
- 5. Shopping Complementarity
 - Revealed cost approach: infrequent vs. frequent shoppers
 - Trip complementarity: taxable/exempt mix
 - Online shopping: low complementarity
- 6. Additional Evidence of Optimizing Behavior
 - Persistent tax incentives prompt long-run responses
 - Cross-border and online shopping
 - Tax salience and announcement effects
 - Newspaper coverage and ballot initiatives

Salience Effects: Newspaper Coverage

	A. Salience Effects						
	newspaper coverage			ballot-induced tax changes			
Dependent variable:	$\Delta \mathrm{ln}(\mathrm{total})$	$\Delta \mathrm{ln}(\mathrm{taxable})$	$\Delta \mathrm{ln}(\mathrm{exempt})$	$\Delta \ln(\text{total})$	$\Delta \ln(\mathrm{taxable})$	$\Delta \mathrm{ln}(\mathrm{exempt})$	
	(1)	(2)	(3)	(4)	(5)	(6)	
$\Delta ln(1 + sales tax rate)$	-1.738*** (0.581)	-2.124^{**} (1.053)	-1.572** (0.603)	$^{-1.526^{**}}_{(0.687)}$	-2.238* (1.179)	-1.310^{**} (0.591)	
$\begin{array}{l} \Delta ln(1 + sales \ tax \ rate) \\ \times \ Score(newspaper \ coverage) \end{array}$	-0.361*** (0.110)	-0.336 (0.257)	-0.439** (0.166)				
$\begin{array}{l} \Delta {\rm ln}(1 + {\rm sales \ tax \ rate}) \\ \times \ {\rm I}({\rm state \ ballot \ proposition}) \end{array}$				-4.195*** (1.050)	-4.765** (2.038)	-5.043*** (0.889)	
Score(newspaper coverage of state sales tax changes)	-0.001 (0.001)	-0.001* (0.001)	$\begin{array}{c} 0.001 \\ (0.001) \end{array}$				
I(date ballot proposition failed)				$\begin{array}{c} 0.022^{***} \\ (0.005) \end{array}$	0.030^{***} (0.009)	0.022^{***} (0.005)	
Period FE Household FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
Observations R-squared	5,822,806 0.016	5,777,878 0.015	5,865,177 0.014	5,865,949 0.014	5,928,421 0.012	5,777,966 0.013	

Table 6: Salience and Announcement Effects

Salience Effects: Ballot Initiatives

	A. Salience Effects					
	newspaper coverage		ballot-induced tax changes			
Dependent variable:	$\Delta \mathrm{ln}(\mathrm{total})$	$\Delta \ln(\text{taxable})$	$\Delta {\rm ln}({\rm exempt})$	$\Delta \mathrm{ln}(\mathrm{total})$	$\Delta \ln(\text{taxable})$	$\Delta\!\ln({\rm exempt})$
	(1)	(2)	(3)	(4)	(5)	(6)
$\Delta {\rm ln}(1 + {\rm sales \ tax \ rate})$	-1.738^{***} (0.581)	-2.124^{**} (1.053)	-1.572^{**} (0.603)	$^{-1.526^{**}}_{(0.687)}$	-2.238* (1.179)	$^{-1.310**}_{(0.591)}$
$\begin{array}{l} \Delta {\rm ln}(1+{\rm sales}{\rm tax}{\rm rate}) \\ \times {\rm Score}({\rm newspaper}{\rm coverage}) \end{array}$	-0.361*** (0.110)	-0.336 (0.257)	-0.439** (0.166)			
$\begin{array}{l} \Delta ln(1 + sales \ tax \ rate) \\ \times \ I(state \ ballot \ proposition) \end{array}$				-4.195*** (1.050)	-4.765** (2.038)	-5.043^{***} (0.889)
Score(newspaper coverage of state sales tax changes)	-0.001 (0.001)	-0.001* (0.001)	$\begin{array}{c} 0.001 \\ (0.001) \end{array}$			
I(date ballot proposition failed)				$\begin{array}{c} 0.022^{***} \\ (0.005) \end{array}$	0.030^{***} (0.009)	0.022^{***} (0.005)
Period FE Household FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
Observations R-squared	5,822,806 0.016	5,777,878 0.015	5,865,177 0.014	5,865,949 0.014	$5,928,421 \\ 0.012$	5,777,966 0.013

Table 6: Salience and Announcement Effects

Announcement Effects

Table 6: Salience and Announcement Effects

B. Announcement Effects

Dependent variable:	$\Delta \ln(\text{total})$ (7)	$\Delta \ln(\text{total})$ (8)
I(date tax rate change proposed)	-0.529 (0.330)	-1.706 (1.444)
$\begin{split} I(\text{date tax rate change proposed}) \\ \times \ I(\text{ballot proposition failed}) \end{split}$		1.434 (1.493)
I(ballot proposition failed)		-0.002 (0.006)
Period FE Household FE	Yes Yes	Yes Yes
Observations R-squared	5,860,476 0.014	5,860,476 0.014
Announcement Effects

Table 6: Salience and Announcement Effects

B. Announcement Effects

Dependent variable:	$\Delta \ln(\text{total})$ (7)	$\frac{\Delta \ln(\text{total})}{(8)}$
I(date tax rate change proposed)	-0.529 (0.330)	-1.706 (1.444)
$\begin{split} I(\text{date tax rate change proposed}) \\ \times \ I(\text{ballot proposition failed}) \end{split}$		1.434 (1.493)
I(ballot proposition failed)		-0.002 (0.006)
Period FE Household FE	Yes Yes	Yes Yes
Observations R-squared	$5,860,476 \\ 0.014$	5,860,476 0.014

- 1. Consumers respond to sales tax changes along several dimensions
- 2. Two realistic extensions of standard model can explain most of observed behavior
 - storability of most goods (for inter-temporal substitution)
 - shopping trip complementarities (for tax-exempt response)
- 3. Sales taxes are both an efficient tax and an effective stimulus tool!
 - efficient tax b/c small consumption elasticity (not b/c sales tax is not salient)
 - effective stimulus tool b/c large spending elasticity

- 1. Consumers respond to sales tax changes along several dimensions
- 2. Two realistic extensions of standard model can explain most of observed behavior
 - storability of most goods (for inter-temporal substitution)
 - shopping trip complementarities (for tax-exempt response)
- 3. Sales taxes are both an efficient tax and an effective stimulus tool!
 - efficient tax b/c small consumption elasticity (not b/c sales tax is not salient)
 - effective stimulus tool b/c large spending elasticity

- 4. In presence of shopping trip complementarity or non-salience, **exempt goods are not a valid control**
 - highlights that diff-in-diff is not model free
 - failure is not due to general equilibrium effects, but holds in partial equilibrium using within-household spending variation
 - also affects other pricing questions
 (eg. cross-selling, sales promotions and store traffic)

THANK YOU!

- 4. In presence of shopping trip complementarity or non-salience, **exempt goods are not a valid control**
 - highlights that diff-in-diff is not model free
 - failure is not due to general equilibrium effects, but holds in partial equilibrium using within-household spending variation
 - also affects other pricing questions
 (eg. cross-selling, sales promotions and store traffic)

THANK YOU!

Intro Data Design Response Model Compl. Long-Run Salience Conclusion A: Model Price

Appendix

Intro Data Design Response Model Compl. Long-Run Salience Conclusion |A: Model Price

Model Solution & Tax Elasticities

Model: "Nested" Dynamic Program

Bellman equation of outer nest ("between periods")

$$V(w_{t_n}) = \max_{C_{t_n}, \Delta t_n} \left\{ U(C_{t_n}, \Delta t_n) + e^{-\rho \Delta t_n} V(w_{t_{n+1}})$$
(1)
s.t. $w_{t_{n+1}} = e^{r \Delta t_n} (w_{t_n} - K_{t_n}) \right\}$ (2)

Value function of inner nest ("within period")

$$U(C_{t_n}, \Delta t_n) = \max_{C(t)} \left\{ \int_{x=0}^{\Delta t_n} e^{-\rho x} u(C(t_n + x)) dx :$$
(3)
$$s.t. \int_{x=0}^{\Delta t_n} e^{\delta x} C(t_n + x) dx = S_{t_n} \right\}$$
(4)

Solution: Envelope theorem (5) and consumption FOC (6)

Inter-temporal:
$$\partial_{C} U'_{t_{n}} - e^{-\rho \Delta t_{n}} V'_{t_{n+1}} \times e^{r \Delta t_{n}} = 0$$
 (5)
Intra-temporal: $\partial_{C} U'_{t_{n}} = \partial_{C} K'_{t_{n}} \cdot V'_{t_{n}}$

$$= \underbrace{P_{t_{n}} f(\Delta t_{n}; \phi)}_{\text{effective price}} \cdot V'_{t_{n}}$$

with
$$f(\Delta t_n; \phi) = \int_0^{\Delta t_n} e^{\phi_X} dx$$
 and $\phi = \delta - \sigma(\delta + \rho)$

leads to familiar Euler eqn for consumption & spending growth:

$$\frac{C(t_{n+1})}{C(t_n)} = e^{\sigma(r-\rho)\Delta t_n} \left(\frac{P_{t_{n+1}}}{P_{t_n}}\right)^{-\sigma}$$
$$\frac{S_{t_{n+1}}}{S_{t_n}} = \frac{C(t_{n+1})}{C(t_n)} \frac{f(\Delta t_{n+1};\phi)}{f(\Delta t_n;\phi)}$$

Solution: FOC for endogenous shopping interval is less familiar

$$\underbrace{\partial_{\Delta t} U'_{t_n} - \partial_{\Delta t} K'_{t_n} \cdot V'_{t_n}}_{\text{Net } \mathsf{MU}_{t_n} \text{ from } \uparrow \Delta t_n} = e^{-\rho \Delta t_n} \underbrace{\left[\rho V_{t_{n+1}} - r w_{t_{n+1}} \cdot V'_{t_{n+1}} \right]}_{\text{Net } \mathsf{MC}_{t_{n+1}} \text{ from } \uparrow \Delta t_n}$$

LHS: Net marginal utility from extending shopping interval

- ▶ $\partial_{\Delta t} U'_{t_n}$: additional utility during extended interval
- ▶ $\partial_{\Delta t} K'_{t_n}$: cost of additional necessary inventory

RHS: Net marginal cost from extending shopping interval

- $\rho V_{t_{n+1}}$: marginal cost of delaying the continuation value
- $ightarrow rw_{t_{n+1}}$: additional interest earned during extended interval

Steady state is given by two non-linear equations

$$(1 - \sigma) rac{\kappa}{P_{t_{ss}} S_{t_{ss}}} = e^{\phi \Delta t_{ss}} rac{f(\Delta t_{ss}; r)}{f(\Delta t_{ss}; \phi)} - 1$$
 $P_{t_{ss}} S_{t_{ss}} + \kappa = (1 - e^{-r\Delta t_{ss}}) w_{t_{ss}}$

The familiar Baumol-Tobin square-root solution is only a very special case

- if $\sigma = 0$ (no intertemporal substitution) and
- *if* we take a 2nd-order approximation around $\Delta t_{ss} = 0$:

$$\Delta t_{ss} pprox \sqrt{rac{\kappa}{rac{\delta+r}{2}P_{t_{ss}}C_{t_{ss}}}}$$

Tax Elasticities: Consumption, Shopping & Spending

► consumption elasticities (unobserved): $\varepsilon_{c_i} \equiv \frac{d \ln(c_i(t_{ss})/c_i(t_{ss-1}))}{d \ln(1+\tau_{t_s})}$

$$\varepsilon_{c_i} = -(\sigma - \eta)B_{\tau} - \eta \cdot 1_{\{i=\tau\}}$$

with taxable expenditure share $B_{\tau} = p_{\tau,t_{ss}}s_{\tau,t_{ss}}/(P_{t_{ss}}S_{t_{ss}})$ and Hicksian demand $c_{it} = b_i \cdot (p_{it}/P_t)^{-\eta}C_t = b_i p_{it}^{-\eta}P_t^{-(\sigma-\eta)} \cdot e^{\sigma(r-\rho)\Delta t}C_{t-1}/P_{t-1}^{-\sigma}$

- ► shopping trip elasticity (observed): $\varepsilon_{\Delta t_{ss-1}} \equiv \frac{d \ln(\Delta t_{ss}/\Delta t_{ss-1})}{d \ln(1+\tau_{tss})}$ $\varepsilon_{\Delta t_{ss-1}} = -\frac{B_{\tau}}{(\delta + r)\Delta t_{ss}}$
- ▶ spending elasticities (observed): $\varepsilon_{s_{i,t_{n-1}}} \equiv \frac{d \ln(\Delta t_n / \Delta t_{n-1})}{d \ln(1 + \tau_{t_n})}$

$$\varepsilon_{\mathbf{s}_{i,t_{ss-1}}} \approx \varepsilon_{\mathbf{c}_{i}} + \varepsilon_{\Delta t_{ss-1}}$$
$$\varepsilon_{\mathbf{s}_{i,\infty}} \approx \varepsilon_{\mathbf{c}_{i}}$$

back to calibration

Intro Data Design Response Model Compl. Long-Run Salience Conclusion |A: Model Price

Retail Price Response

Moderate Decline in Pre-Tax Prices

	B. Price Response			
Dependent variable:	$\Delta \ln(\text{retail price})$		$\Delta \ln(\text{wholesale price})$	
	(5)	(6)	(7)	(8)
$\Delta \ln(1 + \text{total sales tax rate})$	-0.215***		-0.008*	
	(0.036)		(0.004)	
$\Delta \ln(1 + \text{state sales tax rate})$		-0.171**		-0.007
		(0.069)		(0.015)
Period FE	Yes	Yes	Yes	Yes
Product FE	Yes	Yes	Yes	Yes
ZIP3 FE	Yes	Yes	Yes	Yes
Observations	4,333,000	5,862,621	4,333,000	5,862,621
R-squared	0.011	0.010	0.189	0.177

Table A.1: Quantity and Price Response

Price decline drives spending up; ie without price decline, we might see even larger spending elasticities