Do Household Finances Constrain Unconventional Fiscal Policy?

Scott R. Baker Lorenz Kueng Leslie McGranahan Brian T. Melzer

NBER Tax Policy and the Economy Conference, Washington DC September 27, 2018

Disclaimer: The views in this paper are those of authors and do not represent the opinions of the Federal Reserve System.

Consumption Taxes as Stimulus Tool

- Main counter-cyclical policy tool in recent decades was short-term interest rate (FFR)
- Tradition interest rate channel stimulates aggregate demand via intertemporal substitution
- When Fed funds rate is against ZLB, policy makers need additional tools
- Possible policy alternatives
 - unconventional monetary policy (eg QE)
 - unconventional fiscal policy: pre-announced consumption tax increase

Consumption Taxes as Stimulus Tool

Temporary consumption taxes as stimulus have never been used in US \rightarrow many open questions:

- 1. Are sales taxes salient enough?
- 2. Won't credit frictions dampen response of large durables?
- 3. Won't response be especially low in recessions?
- 4. Won't the effect be too short-lived?

This paper: use historical sales tax rate changes

Preview of Results

1. Are sales taxes salient enough?

Yes. Consumers bring spending forward to month before taxes increase

2. Won't credit frictions dampen response of large durables?

Yes. Response at low credit scores much smaller than at high scores

3. Won't response be especially low in recessions?
 No. Other forces work in opposite direction
 → average response larger in recessions

Preview of Results

- 1. Are sales taxes salient enough?
 - **Yes.** Consumers bring spending forward to month before taxes increase
- 2. Won't credit frictions dampen response of large durables?

Yes. Response at low credit scores much smaller than at high scores

Won't response be especially low in recessions?
 No. Other forces work in opposite direction

 → average response larger in recessions

Preview of Results

- 1. Are sales taxes salient enough?
 - **Yes.** Consumers bring spending forward to month before taxes increase
- 2. Won't credit frictions dampen response of large durables?

Yes. Response at low credit scores much smaller than at high scores

Won't response be especially low in recessions?
 No. Other forces work in opposite direction

 → average response larger in recessions

Preview of Results

- 1. Are sales taxes salient enough?
 - **Yes.** Consumers bring spending forward to month before taxes increase
- 2. Won't credit frictions dampen response of large durables?

Yes. Response at low credit scores much smaller than at high scores

3. Won't response be especially low in recessions?
 No. Other forces work in opposite direction

 → average response larger in recessions

Preview of Results

4. Won't the effect just be too short-lived?

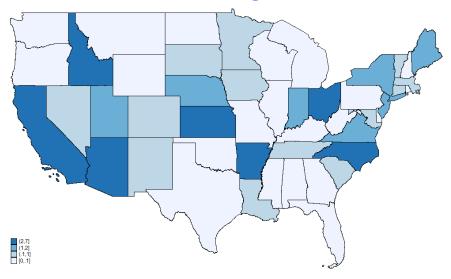
Not necessarily. Response is short-lived b/c changes are small. Counter-cyclical policy would be much larger

Preview of Results

Won't the effect just be too short-lived?
 Not necessarily. Response is short-lived b/c changes are small. Counter-cyclical policy would be much larger

Outline

- 1. Data
- 2. Methodology
- 3. Results
 - 3.1 Tax Salience
 - 3.2 Credit Frictions
 - 3.3 Effectiveness during Recessions
 - 3.4 Evaluation as a Counter-Cyclical Policy Tool


Conclusions

Sales Tax Data

- State sales taxes, monthly 1999-2017
- 57 state tax changes
 - $\Delta \tau_{state}$: μ =0.55%, med=0.25%

- Also Zipcode-level sales taxes from CCH Wolters Kluwer, 2003-2015
 - over 2,000 distinct local changes
 - b/c of recording issues at granular zip level, we restrict analysis to state changes

Number of Tax Rate Changes, 1999-2017

Car Sales Data

FRBNY/Equifax Consumer Credit Panel (CCP)

- number of newly initiated vehicle loans, 1999-2017
- 5% random sample of individuals w/ Equifax credit report

Experian AutoCount, 2005-2015

- includes non-financed purchases and leases
- identifies whether used or new purchases (not in CCP)
- main limitation: measurement error in timing of purchases
 - ightarrow some purchases recorded with a lag of about 2 weeks

Car Sales Data

FRBNY/Equifax Consumer Credit Panel (CCP)

- number of newly initiated vehicle loans, 1999-2017
- 5% random sample of individuals w/ Equifax credit report

Experian AutoCount, 2005-2015

- includes non-financed purchases and leases
- identifies whether used or new purchases (not in CCP)
- main limitation: measurement error in timing of purchases
 - ightarrow some purchases recorded with a lag of about 2 weeks

Car Sales Data

FRBNY/Equifax Consumer Credit Panel (CCP)

- number of newly initiated vehicle loans, 1999-2017
- 5% random sample of individuals w/ Equifax credit report

Experian AutoCount, 2005-2015

- includes non-financed purchases and leases
- identifies whether used or new purchases (not in CCP)
- main limitation: measurement error in timing of purchases
 - \rightarrow some purchases recorded with a lag of about 2 weeks

Methodology

Use high frequency of tax & spending data and exploit fiscal inside lag

Important

- These are <u>not shocks</u> (ie tax news/information shocks)
- but predetermined tax changes
 - ⇒ Captures substitution effects, not income effects (*if* consumers are forward-looking optimizers)

$\Delta \ln(cars_{st}) = \sum_{i} \beta_{i} \cdot \Delta \ln(1 + \tau_{s,t+i}) + \gamma_{t} + z_{st} + \varepsilon_{st}$

 τ : sales tax rate t: month s: state

Methodology

Use high frequency of tax & spending data and exploit fiscal inside lag

Important

- These are <u>not shocks</u> (ie tax news/information shocks)
- but predetermined tax changes
 - ⇒ Captures substitution effects, not income effects (*if* consumers are forward-looking optimizers)

$\Delta \ln(cars_{st}) = \sum_{i} \beta_{i} \cdot \Delta \ln(1 + \tau_{s,t+i}) + \gamma_{t} + z_{st} + \varepsilon_{st}$

 τ : sales tax rate t: month s: state

Methodology

Use high frequency of tax & spending data and exploit fiscal inside lag

Important

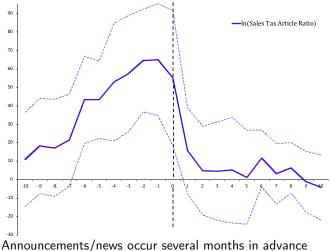
- These are <u>not shocks</u> (ie tax news/information shocks)
- but predetermined tax changes
 - ⇒ Captures substitution effects, not income effects (*if* consumers are forward-looking optimizers)

$\Delta \ln(cars_{st}) = \sum_{i} \beta_{i} \cdot \Delta \ln(1 + \tau_{s,t+i}) + \gamma_{t} + z_{st} + \varepsilon_{st}$

τ: sales tax rate
t: month
s: state

SEs clustered by state

Fiscal Inside Lag: A Lower Bound

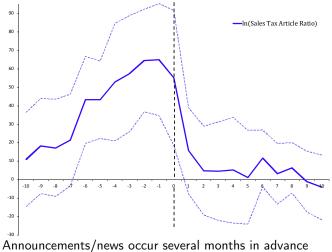

- \blacktriangleright Lag between passage and implementation of Δau
- Baker et al (2018) collect data for 57 state changes 2004-2015
- find that median lag = 3 months
- I lower bound on fiscal inside lag b/c information available before (media, ballots)
- ightarrow look at newspaper coverage around Δau

Fiscal Inside Lag: A Lower Bound

- \blacktriangleright Lag between passage and implementation of Δau
- Baker et al (2018) collect data for 57 state changes 2004-2015
- find that median lag = 3 months
- Iower bound on fiscal inside lag b/c information available before (media, ballots)
- ightarrow look at newspaper coverage around Δau

Fiscal Lag: Evidence from News Articles

Conclusions



Hence, at the time of the change this is not a shock (*if salient*)

Are HHs aware of these tax changes? (tax salience)

Fiscal Lag: Evidence from News Articles

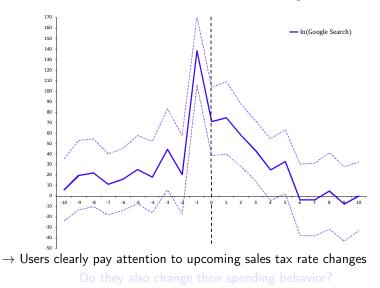
Conclusions

Hence, at the time of the change this is not a shock (*if salient*)

Are HHs aware of these tax changes? (tax salience)

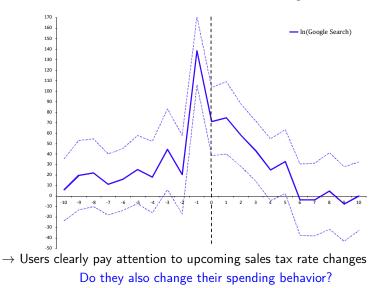
Outline

- 1. Data
- 2. Methodology
- 3. Results
 - 3.1 Tax Salience
 - 3.2 Credit Frictions
 - 3.3 Effectiveness during Recessions
 - 3.4 Evaluation as a Counter-Cyclical Policy Tool


1. Tax Salience: Evidence from Google

Are sales taxes salient enough?

Conclusions


1. Tax Salience: Evidence from Google

Are sales taxes salient enough?

1. Tax Salience: Evidence from Google

Are sales taxes salient enough?

1. Tax Salience: Car Sales Response

	All Tax Changes	Large Changes	Increases	Decreases
	(1)	(2)	(3)	(4)
$\Delta \log(1+\tau)$, lead 1	8.277***	8.825***	8.262***	8.304***
	(2.767)	(2.624)	(2.771)	(2.760)
$\Delta log(1+\tau)$	-9.659***	-10.75^{***}	-11.16^{***}	-5.595^{***}
	(1.947)	(2.025)	(2.726)	(1.697)
$\Delta \log(1+\tau), \log 1$	3.056^{***}	3.126***	3.067***	3.049***
	(0.810)	(0.717)	(0.814)	(0.812)
Year-by-month FE	Yes	Yes	Yes	Yes
Observations	5,989,936	5,989,936	5,978,901	5,966,745
R-squared	0.024	0.024	0.024	0.024

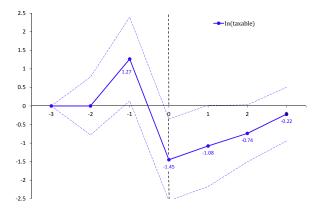
Table 2: Response of Car Purchases to Sales Tax Changes, Equifax CCP Data

 \rightarrow Yes, car purchases respond to (future) taxes

1. Tax Salience: Car Sales Response

We find similar tax elasticities using AutoCount data

similar for financed, non-financed cars & leases


 $\rightarrow\,$ studying financed purchases does not bias results

similar response for used and new

 $\rightarrow\,$ important b/c new cars impact aggregate demand more

Comparison with Retail Spending Response

In previous work (Baker, Johnson and Kueng 2018), we look at AC Nielsen retail spending response:

- similar pattern, but car sales elasticity 7x larger

- in Nielsen, we also see larger responses for more durables and storables

2. Credit Frictions

Won't credit frictions dampen response of durables?

2. Credit Frictions

Won't credit frictions dampen response of durables?

	Credit Score Quintiles				
	1 st	2nd	3rd	$4 \mathrm{th}$	5th
	(1)	(2)	(3)	(4)	(5)
$\Delta \log(1+\tau)$, lead 1	3.966***	3.399**	4.963**	7.537***	6.460**
	(0.920)	(1.559)	(1.996)	(2.003)	(2.602)
$\Delta {\rm log}(1{+}\tau)$	-4.140^{***}	-5.030***	-5.544^{***}	-8.179^{***}	-7.301^{***}
	(1.458)	(0.977)	(0.708)	(1.591)	(2.000)
$\Delta \log(1+\tau)$, lag 1	1.170	1.454	0.963	3.330^{***}	3.209^{***}
	(0.891)	(1.052)	(0.760)	(0.815)	(0.980)
Year-by-month FE	Yes	Yes	Yes	Yes	Yes
Observations	5,989,936	5,989,936	5,989,936	5,989,936	5,989,936
R-squared	0.007	0.008	0.009	0.010	0.010

Table 4: Differential Response Across Credit Scores, Equifax CCP Data

 \rightarrow Yes, low credit scores respond much less.

2. Credit Frictions

AutoCount data shows

- heterogeneity is driven by new purchases Why?
 - new car purchases are larger & more often financed
 - used cars use less financing
 - (also different buyer composition)

3. Effectiveness during Recessions

Won't response be especially low in recessions?

3. Effectiveness during Recessions

Won't response be especially low in recessions?

	by NBER Recession Dates		by State Coincident Index		
	Recession	Non-Recession	Recession	Non-Recession	
	(1)	(2)	(3)	(4)	
$\Delta \log(1+\tau)$, lead 1	15.08***	6.328***	13.51***	5.923**	
	(2.286)	(2.217)	(2.558)	(2.635)	
$\Delta \log(1+\tau)$	-17.48***	-7.098***	-16.82***	-6.631***	
	(2.623)	(1.301)	(2.039)	(1.354)	
$\Delta \log(1+\tau)$, lag 1	3.708***	2.867***	3.917***	2.746***	
	(1.175)	(0.923)	(0.863)	(1.009)	
Year-by-month FE	Yes	Yes	Yes	Yes	
Observations	$524,\!157$	5,471,929	1,129,625	4,866,461	
R-squared	0.017	0.025	0.036	0.022	

Table 6: Response in Recessions vs. Normal Times

 \rightarrow No. Response is larger!

Composition effects?

3. Effectiveness during Recessions

	Credit Score		Mortgage		
-	Recession	Non-Recession	Recession	Non-Recession	
	(1)	(2)	(3)	(4)	
$\Delta \log(1+\tau)$, lead 1	238.2**	120.4	1.514*	0.297	
	(99.50)	(78.87)	(0.891)	(0.465)	
$\Delta \log(1+\tau)$	-595.1***	-196.0**	-3.062***	0.111	
	(70.11)	(81.13)	(0.599)	(0.257)	
$\Delta \log(1+\tau)$, lag 1	281.5^{***}	172.5**	1.835^{***}	0.00962	
	(82.16)	(75.84)	(0.487)	(0.350)	
Year-by-month FE	Yes	Yes	Yes	Yes	
Observations	257,048	$2,\!875,\!428$	256,942	2,840,889	
R-squared	0.003	0.004	0.002	0.002	

Table 8: Composition Effects in Recession vs. Normal Times

 \rightarrow Yes, larger composition changes during recessions.

3. Effectiveness during Recessions

	ln(Loan Value)		Age		
-	Recession	Non-Recession	Recession	Non-Recession	
	(5)	(6)	(7)	(8)	
$\Delta \log(1+\tau)$, lead 1	3.481***	0.0222	5.697	-7.903	
	(0.493)	(0.806)	(12.50)	(12.16)	
$\Delta \log(1+\tau)$	-1.966^{**}	0.330	-88.86***	-17.09	
	(0.802)	(0.756)	(23.63)	(12.88)	
$\Delta \log(1+\tau)$, lag 1	1.357^{***}	1.319**	46.02	16.30	
	(0.438)	(0.570)	(34.15)	(10.13)	
Year-by-month FE	Yes	Yes	Yes	Yes	
Observations	257,048	$2,\!875,\!428$	$256,\!938$	2,838,616	
R-squared	0.002	0.002	0.001	0.002	

Table 8: Composition Effects in Recession vs. Normal Times

Is it all composition effect?

	by Credit Score Quintile				
	1st	2nd	3rd	4th	5th
	(5)	(6)	(7)	(8)	(9)
$\Delta \log(1+\tau)$, lead 1	3.913***	1.662	4.175**	6.436***	4.142*
	(1.006)	(1.675)	(1.749)	(1.539)	(2.269)
$\Delta \log(1+\tau)$	-2.664*	-4.027***	-4.475***	-5.780***	-3.847***
	(1.347)	(0.980)	(0.905)	(1.126)	(1.334)
$\Delta \log(1+\tau)$, lag 1	0.477	2.384^{*}	1.095	3.751^{***}	2.244^{*}
	(1.294)	(1.205)	(0.878)	(1.252)	(1.114)
Recession x $\Delta \log(1+\tau)$, lead 1	0.164	5.333***	2.419	3.386	7.116***
	(1.122)	(1.607)	(1.889)	(2.197)	(1.618)
Recession x $\Delta \log(1+\tau)$	-4.527^{**}	-3.075	-3.281^{**}	-7.356^{***}	-10.60***
	(1.890)	(1.958)	(1.351)	(2.244)	(1.681)
Recession x $\Delta \log(1+\tau)$, lag 1	2.132	-2.864	-0.409	-1.296	2.963^{**}
	(1.712)	(1.917)	(1.109)	(1.656)	(1.185)
Year-by-month FE	Yes	Yes	Yes	Yes	Yes
Observations	5,989,936	5,989,936	5,989,936	5,989,936	5,989,936
R-squared	0.007	0.008	0.009	0.010	0.010

Table 6: Response in Recessions vs. Normal Times

 \rightarrow No. Also differential response within credit score \quad \Rightarrow other effects

Example: more attention to taxes during recessions?

	by Credit Score Quintile				
	1 st	2nd	3rd	4th	5th
	(5)	(6)	(7)	(8)	(9)
$\Delta {\rm log}(1{+}\tau),{\rm lead}\ 1$	3.913***	1.662	4.175**	6.436***	4.142*
	(1.006)	(1.675)	(1.749)	(1.539)	(2.269)
$\Delta \log(1+\tau)$	-2.664*	-4.027^{***}	-4.475^{***}	-5.780***	-3.847^{***}
	(1.347)	(0.980)	(0.905)	(1.126)	(1.334)
$\Delta \log(1+\tau)$, lag 1	0.477	2.384^{*}	1.095	3.751^{***}	2.244^{*}
	(1.294)	(1.205)	(0.878)	(1.252)	(1.114)
Recession x $\Delta \log(1+\tau)$, lead 1	0.164	5.333***	2.419	3.386	7.116***
	(1.122)	(1.607)	(1.889)	(2.197)	(1.618)
Recession x $\Delta \log(1+\tau)$	-4.527^{**}	-3.075	-3.281^{**}	-7.356^{***}	-10.60***
	(1.890)	(1.958)	(1.351)	(2.244)	(1.681)
Recession x $\Delta \log(1+\tau)$, lag 1	2.132	-2.864	-0.409	-1.296	2.963^{**}
	(1.712)	(1.917)	(1.109)	(1.656)	(1.185)
Year-by-month FE	Yes	Yes	Yes	Yes	Yes
Observations	5,989,936	5,989,936	5,989,936	5,989,936	5,989,936
R-squared	0.007	0.008	0.009	0.010	0.010

Table 6: Response in Recessions vs. Normal Times

 \rightarrow No. Also differential response within credit score $\ \Rightarrow$ other effects Example: more attention to taxes during recessions?

Intro

3. Effectiveness during Recessions

Table 8: Google Searches and Newspaper Articles during Recessions

	Google Searches		Newspape	er Articles
	(2)	(3)	(5)	(6)
$\Delta \log(1+\tau)$, lead 1	50.37***	38.76***	42.34***	45.92***
0())	(9.819)	(5.943)	(6.146)	(6.870)
Recession x $\Delta \log(1+\tau)$, lead 1		57.66***		-16.68
		(13.36)		(15.02)
Year-by-month FE	Yes	Yes	Yes	Yes
State FE	Yes	Yes	Yes	Yes
Observations	4,814	4,814	7,293	7,293
R-squared	0.745	0.729	0.608	0.599

 \rightarrow Yes. More Google Searches during recessions, but not more tax newspaper articles or tax changes

Won't the effect just be too short-lived?

Won't the effect just be too short-lived?

	in levels
$\Delta \log(1+\tau)$, leads 2-4	-2.281
	(1.424)
$\Delta \log(1+\tau)$, lead 1	4.973**
	(2.308)
$\Delta \log(1+\tau)$	-4.707***
$\Delta \log(1+\tau)$, lag 1	(1.106) -1.636
$\Delta \log(1+t)$, lag 1	(1.095)
$\Delta \log(1+\tau)$, lags 2-4	-3.406***
3((1.120)
$\Delta \log(1+\tau)$, lags 5-8	-3.845**
	(1.537)

One-month effect consistent with our previous results w/ AC Nielsen

Does this mean response does not last long enough to be policy relevant?

Won't the effect just be too short-lived?

	in levels
$A \log \left(1 + \pi\right) \log d\alpha = 0.4$	-2.281
$\Delta \log(1+\tau)$, leads 2-4	
(1 + -) $(1 + -)$ $(1 + -)$ $(1 + -)$	(1.424)
$\Delta \log(1+\tau)$, lead 1	4.973**
(1 + -)	(2.308)
$\Delta \log(1+\tau)$	-4.707***
	(1.106)
$\Delta \log(1+\tau)$, lag 1	-1.636
	(1.095)
$\Delta \log(1+\tau)$, lags 2-4	-3.406***
	(1.120)
$\Delta \log(1+\tau)$, lags 5-8	-3.845**
	(1.537)

One-month effect consistent with our previous results w/ AC Nielsen Does this mean response does not last long enough to be policy relevant?

Back of the envelope calculation:

- ► *T*: economic life of a car (in years)
- g: annual growth rate of new car value
- ▶ Value of new & old car: $V_{new} = (1 + g)^T \times V_{old}$

Pulling forward car purchase by one month if

$$\Delta au imes V_{\textit{new}} \geq rac{V_{\textit{old}}}{T \cdot 12}$$

With T = 11, g = 2%, break-even change =0.61% Compares well with observed tax change =0.55%

Back of the envelope calculation:

- ► *T*: economic life of a car (in years)
- g: annual growth rate of new car value
- ► Value of new & old car: $V_{new} = (1 + g)^T \times V_{old}$

Pulling forward car purchase by one month if

$$\Delta au imes V_{\textit{new}} \geq rac{V_{\textit{old}}}{T \cdot 12}$$

With T = 11, g = 2%, break-even change =0.61% Compares well with observed tax change =0.55%

- Farhi etal (2013) calibrate New Keynesian model to U.S. economy at the ZLB during Great Recession
- They predict that $\Delta \tau = 10\%$ to overcome recession (from 5% to 15%): 18× observed $\Delta \tau$
- ► Based on back-of-envelope caluclaiton, impact on car sales would last 16.5 months with $\Delta \tau = 10\%$
- For comparison, Great Recession lasted 18 months

Data

Conclusions

Consumption tax changes can be an effective counter-cyclical policy tool

- consumers are aware of tax incentives and respond accordingly
- tax elasticities are large
- composition and attention effects more than offset credit frictions
- reasonable sized tax change might persist long enough

Conclusions

Conclusions

Consumption tax changes can be an effective counter-cyclical policy tool

- consumers are aware of tax incentives and respond accordingly
- tax elasticities are large
- composition and attention effects more than offset credit frictions
- reasonable sized tax change might persist long enough

Policy Challenge

Designing optimal announcement ("fiscal lag") Trade-off

- long enough foresight so consumers can respond
- short enough so that they spend during recession

(Also, communicate a compensated change!)

Thank you!

Policy Challenge

Designing optimal announcement ("fiscal lag") Trade-off

- long enough foresight so consumers can respond
- short enough so that they spend during recession

(Also, communicate a compensated change!)

Thank you!